Introduction to Infinite Sequences

Warm-Up

(a) What is the next number in this sequence: $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$?
(b) Write a formula for the $k^{t h}$ number in the sequence: $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$?
(c) Is there a "last" number in this sequence? If so, what is it?

Sequences

DEFINITION: Sequence
We define a sequence as an infinite list of numbers written in a definite order.
The formal definition of a sequence is that is that is the range (set of outputs) of a function that uses the the natural numbers \mathbb{N} as its domain (set of inputs). We typically write a sequence as $a_{1}, a_{2}, a_{3}, \ldots$, where the a_{k} are called the terms of the sequence) and we refer to the entire series as a whole as $\left\{a_{n}\right\}$ or (sometimes) $\left\{a_{n}\right\}_{n=1}^{\infty}$.

DEFINITION: Limit of a Sequence

A sequence $\left\{a_{n}\right\}$ has a limit L if for every $\epsilon>0$ there exists a corresponding integer N (which depends on ϵ) so that if $n>N$ then $\left|a_{n}-L\right|<\epsilon$.

Basically, this formal definition means that if a sequence has a limit then you can always find a term in the sequence which is as close to the limit value L as you desire.

Notation

When a sequence has a limit L we write $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$ as $n \rightarrow \infty$.

Divergent, It's Not Just At The Movies!

If $\lim _{n \rightarrow \infty} a_{n}$ exists then we say the sequence converges and call it a convergent sequence.
If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or $\lim _{n \rightarrow \infty} a_{n}= \pm \infty$ then we say the sequence diverges and call it a divergent sequence. (Divergent sequences are not dangerous!)
EXAMPLE
Let's Use the horizontal axis as n and the vertical axis as a_{n} to draw a picture illustrating the convergence of the sequence $a_{n}=\frac{1}{n}$. What's the limit L of this sequence?

THEOREM

If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ where n is a (positive) integer, then the sequence $\left\{a_{n}\right\}$ converges to L, i.e. $\lim _{n \rightarrow \infty} a_{n}=L$.

Exercise

What is the limit of the sequence $a_{n}=\frac{n}{n+1}$? Write out the first four terms of the sequence...

RECALL: L'Hôpital's Rule

If the limit on the left has an indeterminate form (i.e. $\frac{0}{0}, \frac{ \pm \infty}{ \pm \infty}$ or $\pm \infty \cdot 0$) then it is equal to the limit on the right (if this limit exists)

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \infty} f^{\prime}(x)}{\lim _{x \rightarrow \infty} g^{\prime}(x)}
$$

When we are working with sequences we often find ourselves dealing with indeterminate forms of the type $\frac{ \pm \infty}{ \pm \infty}$ or $\pm \infty \cdot 0$.

By remembering to use L'Hôpital's rule we can find the limits of a whole bunch of new functions, and we will thus have a nice way to evaluate indeterminate limits.
Special Sequence
Let's analyze the sequence $\left\{r^{n}\right\}$. For what values of r will this sequence converge?

Summarize The Results Here

$$
\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{l}
\quad, \text { if } \\
, \\
, \text { if } \\
,
\end{array}\right.
$$

GROUPWORK

Find the limits of the following sequences:
(a) $a_{n}=\frac{\ln n}{n}$
(b) $a_{n}=\frac{e^{n}}{\ln n}$
(c) $a_{n}=\frac{\cos ^{2}(n)}{n^{2}}$
(d) $a_{n}=2+\frac{3 n}{n^{2}+1}$
(e) $a_{n}=\frac{4 n^{2}+n+7}{3 n^{2}+1}$
(d) $a_{n}=(-1)^{n}$

THEOREM
If $\lim _{x \rightarrow \infty} a_{n}=L$ and the function $f(x)$ is continuous at L then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$

DEFINITION: monotonic sequence
A sequence $\left\{a_{n}\right\}$ is said to be increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$. In other words $a_{1}<a_{2}<$ $a_{3}<\ldots$. A sequence $\left\{a_{n}\right\}$ is said to be decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$. In other words $a_{1}>a_{2}>a_{3}>\ldots$.
If a sequence that is decreasing or increasing is called monotonic.

EXAMPLE

Adapted from Stewart, p. 435, Exercise 37. Show that $a_{n}=\frac{1}{2 n+3}$ is monotonic.

DEFINITION: bounded sequence
A sequence $\left\{a_{n}\right\}$ is said to be bounded above if there exists a number M so that $a_{n} \leq M$ for all $n \geq 1$. A sequence $\left\{a_{n}\right\}$ is said to be bounded below if there exists a number m so that $a_{n} \geq m$ for all $n \geq 1$. If a sequence is bounded above and bounded below it is said to be bounded.
EXAMPLE
Adapted from Stewart, p. 435, Exercise 37. Show that $a_{n}=\frac{1}{2 n+3}$ is bounded.

THEOREM

Every bounded, monotonic series is convergent!

