(a) What's the circumference of a circle of radius R ?
(b) What is distance between two points as $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$?

FORMULA: Length of a Curved Segment

The length L of a curved segment represented by the graph $y=f(x)$ over the interval $a \leq x \leq b$ is given by

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

(NOTE: This formula assumes that the derivative $f^{\prime}(x)$ exists and is continuous on the interval $a \leq$ $x \leq b$.)

The arc length formula can also be written using Leibniz' notation for the derivative:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

EXAMPLE
Exercise \#18, page 391 of Stewart Find the length of $y=1-e^{-x}$ between $0 \leq x \leq 2$.

The Arc Length Function

Given a function $f(t)$, we can define a function $s(x)$ that measures the distance along the curve from a starting point $\mathbf{P}(a,(f(a))$ to another point $\mathbf{Q}(x, f(x))$ as

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

By the Fundamental Theorem of Calculus Part 2, we can write

$$
\begin{aligned}
\frac{d s}{d x} & =\sqrt{1+\left[f^{\prime}(x)\right]^{2}} \\
& =\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
\end{aligned}
$$

This means we can get the famous expression that relates the change in arc length $(d s)$ to the change in input ($d x$) and change in output ($d y$) of a function $y=f(x)$

$$
\left(\frac{d s}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}
$$

or that

$$
(d s)^{2}=(d x)^{2}+(d y)^{2}
$$

This equation has an interesting geometric interpretation

Exercise

Stewart, pg. 392, Exercise 29. Find the arclength function for the curve $y=2 x^{3 / 2}$ with starting point $P_{0}(1,2)$.

