Warm-Up

(a)What is the volume of a cylinder of radius r and height h ?
(b) What is the volume of a cone of radius r and height h ?
(c) What is the volume of a square pyramid with side x and height h ?

If only there was a way to work out these formulas instead of trying to memorize them. But, wait, there is. An application of integration!

DEFINITION: Volume

If S is a solid that lies between $x=a$ and $x=b$ with cross-sectional area in the plane P_{x} perpendicular to the x-axis given by $A(x)$ thenthe volume of S is given by the equation

$$
V=\int_{a}^{b} A(x) d x
$$

EXAMPLE

Let's draw the horizontal and vertical cross-sections of a cone of radius r and height h lying with its circular cross-sectional area to be perpendicular to the x-axis and obtain an expression for the crosssectional area $A(x)$.

We can show that the cross-sectional area $A(x)=\left(\frac{r x}{h}\right)^{2}$ Thus the volume of the cone will be $\int_{0}^{h} A(x) d x=\frac{1}{3} \pi r^{2} h$.

Exercise

You can use a similar method to show that the volume of a sphere is $\frac{4}{3} \pi r^{3}$

Solid of Revolution

We can obtain solids by taking an area and revolving it about a particular axis. In general, we calculate the volume by using the formula

$$
V=\int_{a}^{b} A(x) d x \quad \text { or } \int_{c}^{d} A(y) d y
$$

where the cross-sectional area basically looks like $\pi \cdot$ radius 2 and the volume resembles a collection of very thin circular disks with thickness given by either $d x$ (if the axis of revolution generating the solid of revolution is a vertical line) or $d y$ (if the axis of revolution generating the solid is horizontal).
EXAMPLE

Let's find the volume of the solid formed by rotating the region bounded by $y=x^{3}, y=8$, and $x=0$ about the y-axis.

Let's find the volume of the solid formed by rotating the region bounded by $y=x^{3}, y=8$, and $x=0$ about the x-axis.

GroupWork
Let's find the volume of the solid formed by rotating the region between the curves $y=x$ and $y=x^{2}$ about
(a) the x-axis;
(b) the y-axis;
(c) the line $y=2$;

