Warm-Up

What is the point of intersection of the curves $f(x)=\sqrt{2 x}$ and $g(x)=8 x^{3}$?

Finding the Area between two curves

TOP-BOTTOM FORMULA
The area A bounded by two curves $y=f(x)$ and $y=g(x)$ and two lines $x=a$ and $x=b$ where f and g are continuous and $f(x) \geq g(x)$ for all x on the interval $a \leq x \leq b$ is given by

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

EXAMPLE

Look at the figure below and write down a definite integral which represents the value of the shaded area A. The area A represents the area between two curves, $f(x)=\sqrt{2 x}$ and $g(x)=8 x^{3}$

Let's compute the value of A by using integration.

A Different Way Of Looking At The Same Shape

RIGHT-LEFT FORMULA
We can think of this shape as being bounded by two curves $x=L(y)$ and $x=R(y$ and the lines $y=c$ and $y=d$. In that case, the area A would be given by

$$
A=\int_{c}^{d}[R(y)-L(y)] d y
$$

Exercise

What are the functions $x=L(y), x=R(y)$ and the lines $y=c$ and $y=d$ for the area above?

EXAMPLE

Compute the value of A again, this time using horizontal boxes.

Depending on the shape of particular area, you should choose horizontal boxes (i.e. a Right-Left $d y$ integral) or vertical boxes (a Top-Bottom $d x$ integral).

GroupWORK

1. Find the area between the line $y=x-1$ and the parabola $y^{2}=2 x+6$

2. Stewart, page 369,\#7. Find the area between the curves $y=(x-2)^{2}$ and $y=x$.
