## Numerical Integration

Warm-Up
(a) If the derivative of $f(x)$ is always positive on an interval $a \leq x \leq b$ then if we use Right Hand Riemann sums we know our approximation for $\int_{a}^{b} f(x) d x$ will be an $\qquad$ .
(b) We know that the error made when using a Riemann sum to approximate a definite integral is related to the $\qquad$ of a function on the interval of integration.

## EXAMPLE

We currently know one way of approximating the numerical value a definite integral, say $\int_{a}^{b} f(x) d x$, i.e. by using Riemann Sums. We know how to do left-endpoint (L), right-endpoint (R), and midpoint approximations (M).
Today we will learn two other methods, Trapezoidal Approximations (T), and Simpson's Approximations (S). Let's try each of these for the following example (with $N=2$ subintervals):

$$
\int_{0}^{4} x^{3} d x=\mathcal{I}=
$$

## Left endpoint.

## Right endpoint.

## Midpoint.

Trapezoidal. Take the average of the left and right endpoint approximations.

Simpson's Rule. Take the weighted average of the midpoint ( $\frac{2}{3}$ ) and trapezoidal ( $\frac{1}{3}$ ) approximations.

## GroupWork

Compare the error made by each method $(\mathbf{L}, \mathbf{R}, \mathbf{T}, \mathbf{M}$ and $\mathbf{S})$ in approximating the exact value of $\mathcal{I}$. Rank the methods in order of increasing accuracy.

## Comparing Numerical Integration Methods

1. Using Left-Hand Riemann Sums (L), Right-Hand Riemann Sums (L), the Midpoint method (M) and the Trapezoidal Rule (T) (all with $\mathrm{N}=50$ ) one obtains the approximations $\mathbf{L}, \mathbf{R}, \mathbf{M}$ and $\mathbf{T}$ to $I=\int_{1}^{3} \sqrt[5]{x} \ln (x) d x$. From looking at the graph of $\sqrt[5]{x} \ln (x)$, the values themselves and your knowledge of each of the numerical methods, fill in the table with the letter ( $\mathbf{L}, \mathbf{R}, \mathbf{M}$ or $\mathbf{T}$ ) associated with the approximate value to the integral. and fill in the table with the name of the method associated with the approximate value.

| Numerical Method | Approximate value |
| :--- | :---: |
|  | 1.493173 |
|  | 1.520544 |
|  | 1.520643 |
|  | 1.547916 |


2. For each of the values you filled in the table in part (1), write down your reasons. That is, explain how you know the relative sizes of $\mathbf{L}, \mathbf{R}, \mathbf{M}$ and $\mathbf{T}$.

## Error Formulas

It turns out that we have fairly precise formulas (or error bounds) for the Midpoint, Trapezoid and Simpson's Rule approximations of a definite integral $\int_{a}^{b} f(x) d x$ will be when using $n$ equal subintervals. Let $E_{M}$ represent the error in using midpoint, $E_{T}$ the error in using the standard trapezoidal rule and $E_{S}$ the error in using Simpson's Rule, then if we know that $\left|f^{\prime \prime}(x)\right| \leq K$ and $\left|f^{(4)}(x)\right| \leq L$ when $a \leq x \leq b$, then

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}} \quad\left|E_{S}\right| \leq \frac{L(b-a)^{5}}{180 n^{4}}
$$

## DISCUSS

What information can we conclude from these formulas for error bounds about the relative accuracy of the various methods?

