Warm-Up

Use the Fundamental Theorem of Calculus (FTC) to evaluate the following integrals:

1. $\int_{1}^{-1} x^{3} d x=$
2. $\int_{0}^{\pi} \sin (x) d x=$
3. $\int_{2}^{5} e^{x^{2}} d x=$
4. $\int_{0}^{1} \sqrt[3]{3 x} d x=$

Differentiating Integrals

The first part of the FTC is really about anti-differentiating derivatives, while the second part of the FTC is about differentiating anti-derivatives. (Note: your textbook arranges the parts of the FTC in different order.) The central point of the FTC is to see differentiation and integration as inverse processes of each other. Another key point is to realize these processes act on functions as their input.

Theorem

The Fundamental Theorem of Calculus (Part Two): If $f(t)$ is continuous on $[a, b]$ and $F(x)$ is defined on $[a, b]$ as

$$
F(x)=\int_{a}^{x} f(t) d t
$$

then $F^{\prime}(x)=f(x)$ on (a, b). In other words, $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$.

EXAMPLE

Let's think about what the expression $\int_{a}^{x} f(t) d t$ means. This is sometime called an accumulation function.
What quantity about the function $f(t)$ is being accumulated?: \qquad
Let's try and visualize what an accumulation function looks like.
As x varies, what does the graph of the accumulation function $A(x)=\int_{0}^{x} f(t) d t$ of the constant function $f(t)=C$ from 0 to x look like? Sketch it below (to the right). What is $A(0)$? $A(1) ? A(-1)$? A(2)?

Exercise

Now, let us define another accumulation function $B(x)$ for the linear function $f(t)=t$ as $B(x)=\int_{0}^{x} t d t=$. I want you to sketch a graph of B on the axes below (to the right).

What happens if you start accumulating from a different point?
Draw a graph of the function $C(x)=\int_{1}^{x} t d t$ on the same axes you sketched $B(x)$.
GroupWork
Consider the following accumulation functions. Use the FTC to find the derivative of each.

1. $F(x)=\int_{0}^{x} e^{-s} d s$. What is $F^{\prime}(x)$?
2. $G(x)=\int_{x}^{2} \ln \left(t^{2}+1\right) d t$. What is $G^{\prime}(x)$?
3. $H(x)=\int_{1}^{x^{2}} e^{t} d t$. What is $H^{\prime}(x)$?

Average Value Of A Function

We can define the average value of a function $f_{\text {ave }}$ over an interval $[a, b]$ as

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

which means that if $f(x)$ is continuous on $[a, b]$ then there always exists a number c such that

$$
f(c) \cdot(b-a)=\int_{a}^{b} f(x) d x
$$

This result is known as the Mean Value Theorem For Integrals.

