Quiz 9

DUE: MON. APR. 14

Name:	Prof. Ron Buckmire
Date:	Friday April 11
Time Begun:	
Time Ended:	

Topic covered: Taylor Series and Taylor Polynomials

The **student learning outcome** of this quiz is to provide you with an opprtunity to display your understanding of Taylor (and MacLaurin) series.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : ____/10

Instructions:

- 1. Once you open the quiz, you have 30 minutes to complete it.
- 2. You **may not** use the book or any of your class notes, but you may use a calculator. You must work alone.
- 3. If you use extra paper, please staple it to the quiz before coming to class. UNSTAPLED SHEETS WILL NOT BE GRADED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules. Complete the reality check to give yourself a sense of how well you think you did on the quiz.
- 5. Relax and enjoy....
- 6. This quiz is due on Monday, April 14, at the beginning of class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, _____, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

SHOW YOUR WORK

Adapted from Stewart, page 487, #4.. Suppose the Taylor series $\sum_{k=0}^{\infty} \frac{f^{(k)}(4)}{k!} (x-4)^k$ for a mystery function f(x) centered at a = 4 has the following expression for its k^{th} derivative:

$$f^{(k)}(4) = \frac{(-1)^k k!}{3^k (k+1)}$$

(a) (3 points) Write down the 2nd-degree Taylor Polynomial approximation to f(x) at a = 4.

(b) (3 points) Find the radius of convergence of the Taylor series for f(x) about a = 4.

(c) (4 points) What is the set of x values for which the Taylor series will converge to the mystery function f(x)?