Fourier Series Approximations

§1 Fourier Series

Suppose that $f(x)$ is a periodic function with period 2π. If we want to approximate this function with a trigonometric polynomial of degree n,

$$
F_{n}(x)=a_{0}+a_{1} \cos (x)+b_{1} \sin (x)+a_{2} \cos (2 x)+b_{2} \sin (2 x)+\cdots+a_{n} \cos (n x)+b_{n} \sin (n x)
$$

then the "best" coefficients to use are the following Fourier coefficients:

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x
\end{aligned}
$$

where $k \geq 1$.
Whereas a Taylor Series attempts to approximate a function locally about the point where the expansion is taken, a Fourier series attempts to approximate a periodic function over its entire domain. That is, a Taylor series approximates a function pointwise and a Fourier series approximates a function globally.

Error in Using Fourier Series

The error in approximating a 2π-periodic function $f(x)$ by a Fourier polynomial $F_{n}(x)$ is given by the following integral:

$$
E_{n}=\int_{-\pi}^{\pi}\left|f(x)-F_{n}(x)\right|^{2} d x
$$

That is, $F_{n}(x)$ is a "good" approximation of $f(x)$ if E_{n} is small. Notice that E_{n} does not depend on x. E_{n} gives a measure of how well $F_{n}(x)$ approximates $f(x)$ over all of $[-\pi, \pi]$, not just at a single point as our error bound for Taylor polynomials did. The above Fourier coefficients are the "best" coefficients in the sense that those coefficients make E_{n} as small as possible.

Part 1: Computing Fourier series

Conside the sawtooth wave of period 2π given by $f(x)=x$ when $-\pi \leq x \leq \pi$. Give a sketch of the sawtooth wave from $-4 \pi \leq x \leq 4 \pi$

Find the first three Fourier polynomials, $F_{1}(x), F_{2}(x)$, and $F_{3}(x)$.
(Hint: a_{0} and the rest of the a_{k} 's are easy to determine with a bit of thought. Focus on the graph of the function and think about the area.)

Now write down a general formula for the Fourier coefficients a_{k} and b_{k}. You may want to break the integral up into two parts to compute b_{k}. You can use Wolfram's integration capabilities to check your answer.

