Names:

Lab #12 Math 120 Lab Thursday April 24, 2014 Ron Buckmire

Fourier Series Approximations

§1 Fourier Series

Suppose that f(x) is a periodic function with period 2π . If we want to approximate this function with a trigonometric polynomial of degree n,

$$F_n(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots + a_n \cos(nx) + b_n \sin(nx)$$

then the "best" coefficients to use are the following Fourier coefficients:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

where $k \geq 1$.

Whereas a Taylor Series attempts to approximate a function locally about the point where the expansion is taken, a Fourier series attempts to approximate a periodic function over its entire domain. That is, a Taylor series approximates a function pointwise and a Fourier series approximates a function globally.

Error in Using Fourier Series

The error in approximating a 2π -periodic function f(x) by a Fourier polynomial $F_n(x)$ is given by the following integral:

$$E_n = \int_{-\pi}^{\pi} |f(x) - F_n(x)|^2 dx.$$

That is, $F_n(x)$ is a "good" approximation of f(x) if E_n is small. Notice that E_n does not depend on x. E_n gives a measure of how well $F_n(x)$ approximates f(x) over all of $[-\pi, \pi]$, not just at a single point as our error bound for Taylor polynomials did. The above Fourier coefficients are the "best" coefficients in the sense that those coefficients make E_n as small as possible.

Part 1: Computing Fourier series

Conside the sawtooth wave of period 2π given by f(x) = x when $-\pi \le x \le \pi$. Give a sketch of the sawtooth wave from $-4\pi \le x \le 4\pi$

Find the first three Fourier polynomials, $F_1(x)$, $F_2(x)$, and $F_3(x)$.

(Hint: a_0 and the rest of the a_k 's are easy to determine with a bit of thought. Focus on the graph of the function and think about the area.)

Now write down a general formula for the Fourier coefficients a_k and b_k . You may want to break the integral up into two parts to compute b_k . You can use Wolfram's integration capabilities to check your answer.