Math 120 Spring 2014

Lab \#9
Math 120
Thursday
Names:
March 27, 2014
Prof. Ron Buckmire

Convergence Tests for Infinite Series

Today we are going to look at a few different tests for convergence of an infinite series of numbers. We will try to familiarize ourselves with methods which determine whether a particular infinite series converges.

SECTION A: Warm-Up

In Derive we can express a sum in two different ways.
I. One way that we can define a sum, whether infinite or finite, is to use the Calculus and Sum options. Having chosen these options, the computer will ask you for a few pieces of information: (1) the expression to be summed (type in " k ") - remember this represents a list of numbers, there is no "function variable" here; (2) the variable of summation - this is NOT a variable inside the sum, it is the variable which is "counting" through the integers for you (type in " k "); (3) the lower limit (type in " 1 "); (4) and the upper limit (Tab over and type in " 3 "). When you hit return you should see this sum written out for you. Write out this sum and calculate it before you ask the computer to do it.

$$
\sum_{k=1}^{3} k=
$$

Tell the computer to approXimate it or Simplify it. Do you get the same result? You should.
II. A second way that we can define a sum is by Authoring the sum ourselves. Author the following:

$$
\begin{aligned}
& \operatorname{SUM}(\mathrm{k}, \mathrm{k}, 1,3) \\
& \operatorname{SUM}\left(\mathrm{k}^{2}, \mathrm{k}, 1,3\right)
\end{aligned}
$$

Do you see the pattern? You can also Author a function involving a sum:

$$
\mathrm{S}(\mathrm{n}):=\operatorname{SUM}(\mathrm{k}, \mathrm{k}, 1, \mathrm{n})
$$

Do you see what it does? What is $S(3)$? After you figure it out, Author $S(3)$ and ask the computer to Simplify it.

This last way of defining the sum as a function of n may seem tedious, but if you have to sum up the same thing over and over and over again, just changing the upper limit each time, then this is a great way to do it!

You can also ask Derive to solve the problem directly by putting in the sum an upper limit of ∞ by typing in "inf". Do this and see what the computer gives you, both symbolically and as an approximation. (Un)fortunately the computer will not always give you a meaningful answer if you put the upper limit as infinity, so you may have to use other methods to determine convergence of the series you are interested in.

Using Wolfram|Alpha, one can use similar commands at www.wolframalpha.com to investigate infinite series.

For example, consider typing the following expressions into Wolfram|Alpha

SUM (k^2, k, 1, 3)
and

SUM (k~2, k, 1, n)
and
$\operatorname{SUM}(k \wedge 2 /(k+1), k, 1, n)$
and

SUM (k^2/(k+1), k, 1, inf)
and
What do your results tell you about the convergence of $\sum_{k=1}^{\infty} \frac{k^{2}}{k+1}$?
Which software do you prefer, Derive or Wolfram|Alpha? Why?

SECTION B: Convergence Tests for Infinite Series

I. n-th Term Test for Divergence

This test comes about from the definition of what convergence of a series means.

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (or does not exist) then the series $\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots$ diverges.

Associated with the above fact is the idea that IT IS ALWAYS TRUE that if $\sum_{k=1}^{\infty} a_{k}$ CONVERGES, then $\lim _{n \rightarrow \infty} a_{n}=0$.

We know that IT IS NOT ALWAYS TRUE that if $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum_{k=1}^{\infty} a_{k}$ CONVERGES.

II. Integral Test for Convergence and Divergence

This test relates facts about improper integrals to facts about infinite series.

Suppose $f(x)$ is a continuous and decreasing function and $f(x)>0$ for all $x \geq 1$. Let $a(k)=f(k)$. THEN
(a) If the $\int_{1}^{\infty} f(x) d x$ CONVERGES, then the infinite series $\sum_{k=1}^{\infty} a_{k}$ CONVERGES.
(b) If the $\int_{1}^{\infty} f(x) d x$ DIVERGES, then the infinite series $\sum_{k=1}^{\infty} a_{k}$ DIVERGES.

Definition For $p>0$ the infinite series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ is called a p-series.

If one applies the integral test to the p-series then
if $p \leq 1$, then p-series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ DIVERGES.
If $p>1$, then the p-series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ CONVERGES.

III. Comparison Test for Convergence and Divergence

(a) If $0 \leq b_{k} \leq a_{k}$ for each k and $\sum_{k=1}^{\infty} a_{k}$ converges, then $\sum_{k=1}^{\infty} b_{k}$ also CONVERGES.
(b) If $0 \leq a_{k} \leq c_{k}$ for each k and $\sum_{k=1}^{\infty} a_{k}$ diverges, then $\sum_{k=1}^{\infty} c_{k}$ also DIVERGES.

IV. Alternating Series Test

Definition An infinite series is said to be an alternating series if it has the form $\sum_{k=1}^{\infty}(-1)^{k} a_{k}$ or $\sum_{k=1}^{\infty}(-1)^{k} a_{k}$ where $a_{1}, a_{2}, a_{3}, \ldots$ are all positive numbers.

If $a_{1}, a_{2}, a_{3}, \ldots, a_{k}, \ldots$ is a sequence of decreasing positive numbers such that $\lim _{n \rightarrow \infty} a_{n}=$ 0 then the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ CONVERGES.

V. Absolute Ratio Test

For any infinite series $\sum_{k=1}^{\infty} a_{k}$, if

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1
$$

then $\sum_{k=1}^{\infty} a_{k}$ CONVERGES.
If $L>1$ or if $\left|a_{k+1} / a_{k}\right|$ does not exist, then $\sum_{k=1}^{\infty} a_{k}$ DIVERGES
If $L=1$ the test is INCONCLUSIVE.

VI. Limit Comparison Test

Let $\sum_{k=1}^{\infty} a_{k}$, be an infinite series of positive terms.
(a) If $\sum_{k=1}^{\infty} c_{k}$ is a convergent series of positive terms, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{c_{n}}$ EXISTS and is NOT INFINITE then $\sum_{k=1}^{\infty} a_{k}$ also CONVERGES.
(b) If $\sum_{k=1}^{\infty} c_{k}$ is a divergent series of positive terms, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{d_{n}}$ EXISTS and is NOT ZERO or IS INFINITE then $\sum_{k=1}^{\infty} a_{k}$ also DIVERGES.

SECTION C: Examples Galore

Now that we have listed a number of tests for convergence the point of this lab is to have you consider the following infinite series and try and determine whether they converge or not.

Directions: For each of the following series, do the following:

- Write out the first few (about 3) terms of the series
- determine what kind of series it is (alternating, increasing, decreasing, positive, etc)
- Apply Test I. for Divergence on the series (n-th term test)
- See if Derive or Wolfram|Alpha can help you determine the convergence directly
- Determine convergence by using one of the other tests found in Section B

1. $\sum_{k=1}^{\infty} 4$
2. $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$
3. $\sum_{k=1}^{\infty} \frac{2^{k}}{k!}$
4. $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$
5. $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k+5}}$
6. $\sum_{k=1}^{\infty} k^{1.4141}$
7. $\sum_{k=1}^{\infty} \frac{2}{k^{2}+1}$
8. $\sum_{k=1}^{\infty} \frac{2}{k^{2}}$
9. $\sum_{k=1}^{\infty} \frac{\ln (k+2)}{k^{2}}$
10. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{k+1}$
11. $\sum_{k=1}^{\infty} k e^{-k}$
12. $\sum_{k=1}^{\infty} k \cos (k \pi)$
13. $\sum_{k=1}^{\infty} \sin \left(\frac{1}{k}\right)$
14. $\sum_{k=1}^{\infty} \sin \left(\frac{1}{k^{2}}\right)$
15. $\sum_{k=1}^{\infty} \frac{2^{k^{2}}}{k!}$

You should turn in one clean copy of this lab per group (with names and signatures of all group members on front page).

