Range	$92.5+$	$90+$	$87.5+$	$82.5+$	$80+$	$77.5+$	$72.5+$	$70+$	$67.5+$	$62.5+$	$60+$	$60-$
Grade	A	$\mathrm{A}-$	$\mathrm{B}+$	B	$\mathrm{B}-$	$\mathrm{C}+$	C	$\mathrm{C}-$	$\mathrm{D}+$	D	$\mathrm{D}-$	F
Frequency	6	2	0	3	3	2	3	1	0	1	0	0

Summary The results on Exam 1 were quite good with 8 of 21 students getting an A and no students getting an F. The median score was 83 and the mean was 84.5 . The high score was 98. Congratulations to everyone!
\#1 Techniques of Integration. (Analytic, Verbal, Computational). a. This first question can be done by integration by substitution (IBS) by letting $u=x / 4$ or by "guess and check." If you use IBS then $d u=\frac{1}{4} d x$ so that $4 d u=d x$. Then the integral should become $-8 \int \cos (u) d u$ which is $-8 \sin u$ or $-8 \sin \left(\frac{x}{4}\right)$. Using guess and check, since x is being divided by 4 a good guess is to multiply by the integrand by 4 and since the given function is cosine its antiderivative shoudl involve since so that $F(x)=4 \cdot-2 \sin \left(\frac{x}{4}\right)=-8 \sin \left(\frac{x}{4}\right)$ is a reasonable guess (add $+C$ to indicate its a family of functions). Use the Chain Rule to check your answer so $F^{\prime}(x)=-8 \cos \left(\frac{x}{4}\right) \cdot \frac{1}{4}=-2 \cos \left(\frac{x}{4}\right)$. b. This second question is to check your antidifferentiation skills of elementary functions. The main issue is to realize that 4^{w} and w^{4} are very different and that $\frac{1}{w^{4}}=w^{-4}$. Then you should be able to use your blue notes to write down $G(w)=\frac{w^{-3}}{-3}+\frac{w^{5}}{5}+\frac{4^{w}}{\ln (4)}+C$. Checking just involves using the derivative power rule (i.e. $\left(x^{n}\right)^{\prime}=n x^{n-1}$) and the derivative exponential rule (i.e. $\left(b^{x}\right)^{\prime}=b^{x} \cdot \ln (b)$. c.. This last one is where most people had difficulties. It's a sum of two functions, the first of which is a product of two elementary functions so that indicates integration by parts (IBP) for that one. The first thing here is to not think that because $(\ln (t))^{\prime}=t \ln t-t$ therefore the anti-derivative of $t \ln t-t$ should be $\ln (t)$. Don't confuse the derivative and anti-derivative! Obviously the derivative of $\ln (t)$ is $1 / t$ and its anti-derivative is $t \ln (t)-t$. So, if you want to use IBP for $\int t \ln (t)$ you have to choose one function to differentiate and one to anti-differentiate. Almost always when you have a choice between differentiating the logarithm function and anti-differentiating something else, the one you want to differentiate is $\ln (t)$. So, let $u=\ln (t)$ and $v^{\prime}=t$ this means that $u^{\prime}=1 / t$ and $v=\frac{t^{2}}{2}$. Using IBP gives you

$$
\begin{aligned}
\int t \ln (t)-t d t & =\frac{t^{2}}{2} \ln (t)-\int \frac{1}{t} \cdot \frac{t^{2}}{2} d t-\int t d t \\
& =\frac{t^{2}}{2} \ln (t)-\int \frac{t}{2} d t-\frac{t^{2}}{2} \\
& =\frac{t^{2}}{2} \ln (t)-\frac{t^{2}}{4}-\frac{t^{2}}{2} \\
H(t) & =\frac{t^{2}}{2} \ln (t)-\frac{3 t^{2}}{4}
\end{aligned}
$$

The great thing about anti-derivatives is that you can always check your answer by diferentiating it. $H^{\prime}(t)=t \ln (t)+\frac{t^{2}}{2} \cdot \frac{1}{t}-\frac{3}{4}(2 t)=t \ln (t)+\frac{t}{2}-\frac{3 t}{2}=t \ln (t)$.
\#2 Fundamental Theorem of Calculus.(Analytic Verbal Computational). This problem is primarily about using the Fundamental Theorem of Calculus in various ways. 2a. $\int_{1}^{2} y^{\prime \prime} d x=$ $y^{\prime}(2)-y(1)=6--2=8$ (Using FTC, part 1 and given the information about $y(x)$ we know that $y^{\prime}(1)=-2$ and $\left.y^{\prime}(2)=6\right) . \mathbf{2 b} . \int_{1}^{2} x y^{\prime} d x$. Many students had issues with this problem
because of a lack of understanding of the meaning of the $x y^{\prime}$ term. It represents a product of two functions, x and the function $y^{\prime}(x)$. (We can write it as simply y^{\prime} because we previously defined $Y^{\prime}(x)=y(x)$. So one should use IBP on this problem, with $u=x$ and $v^{\prime}=y^{\prime}$. With that choice $u^{\prime}=1$ and $v=y$. Then,

$$
\begin{aligned}
\int_{1}^{2} x y^{\prime} d x & =\left.x y\right|_{1} ^{2}-\int_{1}^{2} 1 \cdot y d x \\
& =2 y(2)-1 y(1)-\int_{1}^{2} y d x \\
& =2 \cdot 5-1 \cdot 2-\int_{1}^{2} y d x \\
& =10-2-\int_{1}^{2} Y^{\prime} d x \\
& =8-(Y(2)-Y(1)) \\
& =8-(13-3)=-2 .
\end{aligned}
$$

2c. $Z(x)=\int_{2}^{x^{4}} y(t) d t$. This means that $Z(x)=Y\left(x^{4}\right)-Y(2)$ (by FTC part 1) since $Y(x)$ is the anti-derivative of $y(x)$. So, using the chain rule combined with the fundamental theorem $Z^{\prime}(x)=Y^{\prime}\left(x^{4}\right) \cdot\left(x^{4}\right)^{\prime}=y\left(x^{4}\right) \cdot 4 x^{3}$. Therefore $Z^{\prime}(1)=y(1) \cdot 4(1)^{3}=2 \cdot 4=8$.
\#3 Using Definite Integral To Find Area (Visual, Analytic, Verbal, Communication). The exact value of A must equal the area under the function $f_{3}(x)=5-x^{2}$ from $x=-1$ to $x=2$ with the area under the line $f_{1}(x)=-4 x$ from $x=-1$ to 0 AND the area under the line $f_{2}(x)=\frac{x}{2}$ removed. Since areas under lines are triangles, one can compute those areas in multiple aways. In terms of integrals,

$$
\begin{aligned}
A & =\int_{-1}^{2} 5-x^{2} d x-\int_{-1}^{0}(-4 x) d x-\int_{0}^{2} \frac{x}{2} d x \\
& =5 x-\left.\frac{x^{3}}{3}\right|_{1} ^{2}-\frac{1}{2} \cdot 1 \cdot 4-\frac{1}{2} \cdot 2 \cdot 1 \\
& =\left(10-\frac{8}{3}\right)-\left(-5-\frac{-1}{3}\right)-2-1 \\
& \left.=(10+5)-\frac{8}{3}-\frac{1}{3}\right)-3 \\
& =15-3-3=9
\end{aligned}
$$

If you count the number of whole boxes contained completely inside the shaded rea there appear to be 9 of them, since each box is 0.5 square units, an underestimate is 4.5 . The number of boxes that are touched in part by trhe shaded area appears to be 24 , so the overestimate is 12 square units.
\#4 Derivative-Antiderivative Pairs. (Visual, Analytic, Computational). This problem is about differentiating the function $g(x)=\sqrt{A x+B}$ and anti-differentiating $f(x)=\frac{C}{\sqrt{A x+B}}$. Using the chain rule, when $g(x)=\sqrt{A x+B}$, then $g^{\prime}(x)=\frac{1}{2} \frac{1}{\sqrt{A x+B}}(A x+B)^{\prime}=\frac{1}{2} \frac{1}{\sqrt{A x+B}} A$.

$$
\begin{aligned}
\left(\frac{2 C}{A} \sqrt{A x+B}\right)^{\prime} & =\frac{2 C}{A}(\sqrt{A x+B})^{\prime}=\frac{2 C}{A} \cdot \frac{1}{2} \frac{1}{\sqrt{A x+B}} A \\
& =\frac{2 C}{A} \frac{A}{2} \frac{1}{\sqrt{A x+B}} \\
& =\frac{C}{\sqrt{A x+B}}
\end{aligned}
$$

You can complete the table by picking specific values for A, B and C.

