\sim	•	•
1 17	1177	٠,
_/	$\Pi \Sigma$	Z
Ψ.	~	_

Basic Calculus II

Name:Section: 8:30am or 10:30am (circle one)	Math 120 Wednesday February 07, 2001 Ron Buckmire Alan Knoerr
Topic covered: Properties of Definite Integrals	

Instructions:

- 1. Once you open the quiz, you have 50 minutes to complete it.
- 2. Where ever possible indicate your answer clearly, in the form of a sentence, showing all work necessary to understand your solution.
- 3. You may not use the book or any of your class notes, but you may use a calculator. You must work alone.
- 4. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 5. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 6. Relax and enjoy....
- 7. This quiz is due on Friday, February 9, at the beginning of class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I,,	pledge my l	honor a	as a huma	n being	and	Occidental
student, that I have followed all the rules about	ove to the let	tter and	d in spirit.			

SHOW ALL YOUR WORK

1. Given

$$f(x) = \begin{cases} -1, & \text{if } -4 \le x < 0 \\ x - 1, & \text{if } 0 \le x \le 4 \end{cases}$$

(a) (3 points) Sketch the function f(x) on the axes below

- (b) (2 points) Use your graph to help you evaluate $\int_{-4}^{0} f(x) dx$ exactly.
- (c) (2 points) Use your graph to help you evaluate $\int_0^4 f(x) dx$ exactly.
- (d) (2 points) Use your previous answers to help you evaluate $\int_{-4}^{4} f(x) dx$ exactly.
- 2. (1 point) Now suppose f(x) was defined as $f(x) = e^{x^2}$, $-4 \le x \le 4$ instead. Why wouldn't you be able to use the same technique you used in question (1) to evaluate $\int_{-4}^{4} e^{x^2} dx$ exactly?