Multivariable Optimization

Optimization for Functions of Two Variables

Definition:

- $z=f(x, y)$ has a local maximum at $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{0}\right) \geq f(x, y)$, for all (x, y) in some neighborhood of $\left(x_{0}, y_{0}\right)$.
- Similarly, $z=f(x, y)$ has a local minimum at $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{0}\right) \leq f(x, y)$, for all (x, y) in some neighborhood of $\left(x_{0}, y_{0}\right)$.

Critical Points

1. Suppose we take a vertical slice in the x-direction through $f(x, y)$ at a local maximum $\left(x_{0}, y_{0}\right)$, and suppose the partial derivatives of f exist there. What will this slice look like near this point? What is the value of $f_{x}\left(x_{0}, y_{0}\right)$?
2. Suppose we take a vertical slice in the y-direction through $f(x, y)$ at a local maximum $\left(x_{0}, y_{0}\right)$, and suppose the partial derivatives of f exist there. What will this slice look like near this point? What is the value of $f_{y}\left(x_{0}, y_{0}\right)$?

Definition: Suppose $f(x, y)$ and its partial derivatives exist in a neighborhood of $\left(x_{0}, y_{0}\right)$. Then $\left(x_{0}, y_{0}\right)$ is a critical point for f if

$$
f_{x}\left(x_{0}, y_{0}\right)=0 \quad \text { and } \quad f_{y}\left(x_{0}, y_{0}\right)=0
$$

Critical points are candidates for local maxima and local minima. Critical points which are not local maxima or local minima are called saddle points (a saddle point is similar to an inflection point). Contour plots can be helpful in classifying critical points.

Examples

4. Find critical points for the following functions:
a) $g(x, y)=x^{2}+y^{2}$
b) $j(x, y)=x^{2}-y^{2}$
c) $f(x, y)=(x+y)^{2}$
d) $k(x, y)=\sin (x)-\sin (y)$

Match these functions to the contour plots on the following page, and classify the critical points as local maxima, local minima, or saddle points.

Contour Plots

