Multivariable Optimization

Optimization for Functions of Two Variables

Definition:

- z = f(x, y) has a local maximum at (x_0, y_0) if $f(x_0, y_0) \ge f(x, y)$, for all (x, y) in some neighborhood of (x_0, y_0) .
- Similarly, z = f(x, y) has a **local minimum** at (x_0, y_0) if $f(x_0, y_0) \le f(x, y)$, for all (x, y) in some neighborhood of (x_0, y_0) .

Critical Points

1. Suppose we take a vertical slice in the x-direction through f(x, y) at a local maximum (x_0, y_0) , and suppose the partial derivatives of f exist there. What will this slice look like near this point? What is the value of $f_x(x_0, y_0)$?

2. Suppose we take a vertical slice in the y-direction through f(x, y) at a local maximum (x_0, y_0) , and suppose the partial derivatives of f exist there. What will this slice look like near this point? What is the value of $f_y(x_0, y_0)$?

Definition: Suppose f(x, y) and its partial derivatives exist in a neighborhood of (x_0, y_0) . Then (x_0, y_0) is a **critical point** for f if

$$f_x(x_0, y_0) = 0$$
 and $f_y(x_0, y_0) = 0$.

Critical points are candidates for local maxima and local minima. Critical points which are not local maxima or local minima are called **saddle points** (a saddle point is similar to an inflection point). Contour plots can be helpful in classifying critical points.

Examples

4. Find critical points for the following functions:

a) $g(x,y) = x^2 + y^2$

b) $j(x,y) = x^2 - y^2$

c) $f(x,y) = (x+y)^2$

d) $k(x,y) = \sin(x) - \sin(y)$

Match these functions to the contour plots on the following page, and classify the critical points as local maxima, local minima, or saddle points.

Contour Plots

