Functions of Two Variables

Introduction

We generally understand the relationship between the derivatives of a function $y=f(x)$ and the shape of the graph of $f(x)$. This allows us to find the extrema of the function, i.e. where it has a global or absolute maximum (or minimum) value, without ever graphing it. This idea is so important there is a whole branch of mathematics devoted to it known as optimization.

Our goal in this last section of the class is to try and learn how to find extrema of functions of more than one variable, i.e. $z=f(x, y)$

Functions of Two Variables

DEFINITION:

Suppose the value of an output variable z is uniquely determined once the values of two input variable x and y are given. Then we say that z is a function of x and y.

As with functions of one variable, to specify the function we need to specify the domain, range, name of the function, and the rule assigning a unique output value to each input pair.

Example

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad z=f(x, y)=2 x^{2}+3 x y-4
$$

means that the function named f has the set \mathbb{R}^{2} of pairs of real numbers as its domain and the set \mathbb{R} of real numbers as its range. The ordered pair of input variables is named (x, y). The output variable is named z. The rule which assigns a value to z given the values of x and y is

$$
z=f(x, y)=2 x^{2}+3 x y-4 .
$$

For this example...

1. If $(x, y)=(1,2)$, what is the value of z ?
2. Can you find a value for x and a value for y which make $z=-4$? Can you find more than one such pair of values? Why doesn't this contradict the claim that f is a function (of two variables)?

Vertical Slices

An alternative approach is to view the graph in slices. Let's will consider how to take vertical slices. These slices have the advantage of reducing the problem of visualizing multivariable functions to the familiar one of graphing functions of one variable, which we can plot easily in a 2-D plane.

DEFINITION:

Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad z=f(x, y)$ is a function of two variables.
The vertical slice of f along the x-axis, holding $y=b$ is the function

$$
\psi(x)=f(x, b), \quad \text { provided }(x, b) \in U
$$

Similarly, the vertical slice of f along the y-axis, holding $x=a$ is the function

$$
\phi(y)=f(a, y), \quad \text { provided }(a, y) \in U .
$$

Example

Suppose $z=f(x, y)=2 x^{2}+3 x y-4$
The vertical slice of f parallel to the x-axis, holding $y=3$ is

$$
z=f(x, 3)=2 x^{2}+3 x \cdot 3-4=2 x^{2}+12 x-4=\psi(x) .
$$

The vertical slice of f parallel to the y-axis, holding $x=-1$ is $\phi(y)=f(-1, y)$

$$
z=f(-1, y)=2(-1)^{2}+3(-1) y-4=-3 y-2=\phi(y)
$$

3. Sketch the graph of $\psi(x)$ versus x below (left) and Sketch the graph of $\phi(y)$ versus y below (right)

4. Find the equation of the vertical slice of f along the x-axis, holding $y=0$:
5. Find the vertical slice of f parallel to the y-axis, holding $x=5 / 2$:
6. What do each of these vertical slices look like for this function $f(x, y)=2 x^{2}+3 x y-4$?
7. Sketch (at least) three vertical slices of $f(x, y)=2 x^{2}+3 x y-4$ where x is held constant on the left axes and (at least) three vertical slices of the same function where y is held constant on the right axes below.

8. Can you use these slices to sketch a picture of the surface graph of $f(x, y)$ versus (x, y) below?

