Recursion, Roots and Newton's Methods

Successive Approximations to Find Square Roots — The Babylonian Algorithm.

Suppose you don't have a square root key on your calculator. How can we obtain $\sqrt{2}$? (The algorithm given here is quite ancient, hence the name "Babylonian Algorithm.") Suppose

$$a = \sqrt{2}$$
. Square both sides.
 $a^2 = 2$ Divide both sides by a .
 $a = 2/a$

Only the true square root of 2 satisfies $\sqrt{2} = 2/\sqrt{2}$.

If x is an estimate which is less than the true value for $\sqrt{2}$ then 2/x is an estimate which is ______ than the true value.

If x is an estimate which is greater than the true value for $\sqrt{2}$ then 2/x is an estimate which is ______ than the true value.

Hence a better estimate will be _____.

General Babylonian Algorithm For Approximating \sqrt{r} .

STEP 1: Let x_0 be your initial estimate for \sqrt{r} .

STEP 2: Then the next estimate is the average of your most recent estimate and r divided by your most recent estimate.

$$x_{\rm new} = \frac{x_{\rm old} + \frac{T}{x_{\rm old}}}{2}$$

STEP 3: Continue calculating terms in the sequence until you reach the level of accuracy desired.

Implementing the Babylonian Algorithm on a TI-83 Calculator

The Babylonian Algorithm to approximate \sqrt{A} is

$$x_{\rm new} = \frac{x_{\rm old} + \frac{A}{x_{\rm old}}}{2}$$

- Let's store the value of A• Let's store X_0 to be 1 1 STO \rightarrow X
- Define the recursive step $(X + ALPHA A \div X) * 0.5 \text{ STO} \rightarrow X$

Press ENTER repeatedly... Write down the results below. (What happens??)

This method is known as a **recursive algorithm** because your next estimate x_{n+1} is produced using information from your current estimate x_n .

The sequence of numbers x_1, x_2, x_3, \ldots , hopefully converges to a finite number L, the limit of the sequence.

Math 114

Newton's Method

Newton's Method is a Calculus-based method for approximating roots. In fact, it derives from the Microscope Approximation,

$$\Delta y \approx g'(a) \Delta x.$$

To use this method to approximate a root r for a function g(x) you need several things:

i) an initial guess x_0 sufficiently close to the root r,

ii) $g'(r) \neq 0$ on an interval a < x < b containing x_0 and r,

ii) g, g', and g'' continuous on an interval a < x < b containing x_0 and r.

Provided these conditions are satisfied, Newton's Method is guaranteed to converge to the root r.

The big question, however, is "HOW CLOSE MUST x_0 BE TO r?" While certain formulas involving the second derivative can be given to address this question, in practice you simply run Newton's Method for a number of iterations to determine whether it is converging to the root you want. If you find it is not doing so, pick another value for x_0 . In lab this week you saw examples of how Newton's Method behaves when x_0 is sufficiently close to r, as well as what can happen when x_0 is to far from r.

Deriving Newton's Method from the Microscope Approximation

Suppose we have obtained our *n*th approximation x_n for the root *r* of *g*, and we want to find a better approximation x_{n+1} . Ideally, we would like to know

$$\Delta x = r - x_n.$$

If we knew this exactly, then we could find the root r as $r = x_n + \Delta x$.

Since we don't know Δx exactly, we will appeal to the Microscope Approximation based at our current guess x_n :

$$\Delta y \approx g'(x_n) \Delta x \implies \Delta x \approx \frac{\Delta y}{g'(x_n)}$$

This approximation is valid provided $g'(x_n) \neq 0$. But this will be true, provided x_n is sufficiently close to r, because we know that $g'(r) \neq 0$ and that g' is continuous on an open interval a < r < b containing r.

Although we don't know Δx exactly, we do know Δy exactly! This is because we know $g(x_n)$ and we also know that g(r) = 0, so

 $\Delta y = \underline{\qquad}.$

Therefore,

 $\Delta x \approx$ _____

and we choose our next approximation x_{n+1} as

 $x_{n+1} =$ _____

Together with an initial guess x_0 , this recursive process defines Newton's Method. Under the conditions listed above, we are guaranteed that

$$\lim_{n \to \infty} x_n = r.$$

Visualizing Newton's Method

Recall that in the lab we derived Newton's Method by considering the equation of the tangent line to a function h(t) at the point $t = t_0$ and then considering the root t_1 of this tangent line to be the approximation to the root t^* of the function h(t).

Consider the graph of $h(t) = e^{t/2} - t - 2$ shown below on the interval $-4 \le t \le 4$.

1. Draw the tangent line to h(t) at $t_0 = 1$. Extend the tangent line to the t-axis. Label this point t_1 .

- 2. Draw the tangent line at $t = t_1$. Find its root and label this point t_2 . Repeat as often as you can.
- 3. What do you notice about the sequence of points t_0, t_1, t_2, \ldots ?
- 4. Visually, how does the limit of your sequence depend on the initial value t_0 ?
- 5. Are there any initial values which will cause the sequence to not converge?

4. Let $g(x) = x^2 - 17$. Confirm that g, g', and g'' are continuous (everywhere), and that $g(x) \neq 0$ on an interval containing the root $r = \sqrt{17}$ and the initial guess $x_0 = 1$. Use three iterations of Newton's Method to approximate the root $r = \sqrt{17}$. For greatest accuracy, record your results as fractions or use the memory registers on you calculator to store intermediate results. Compare this with the value for $\sqrt{17}$ given by your calculator.

n	x_n	$\Delta x \approx -g(x_n)/g'(x_n)$
0	1	
1		
2		
3		
4		
5		
6		

Question

Do you see any connection between Newton's Method and the ancient Babylonian Algorithm?

(HINT: Try writing down the recursive formula you would need to use Newton's Method to solve find the root of $f(x) = x^2 - A$.)