Recursion, Roots and Newton's Methods

Successive Approximations to Find Square Roots - The Babylonian Algorithm.

Suppose you don't have a square root key on your calculator. How can we obtain $\sqrt{2}$? (The algorithm given here is quite ancient, hence the name "Babylonian Algorithm.")
Suppose

$$
\begin{aligned}
a & =\sqrt{2} . \text { Square both sides. } \\
a^{2} & =2 \text { Divide both sides by } a . \\
a & =2 / a
\end{aligned}
$$

Only the true square root of 2 satisfies $\sqrt{2}=2 / \sqrt{2}$.
If x is an estimate which is less than the true value for $\sqrt{2}$ then $2 / x$ is an estimate which is
\qquad than the true value.
If x is an estimate which is greater than the true value for $\sqrt{2}$ then $2 / x$ is an estimate which is \qquad than the true value.
Hence a better estimate will be \qquad .

General Babylonian Algorithm For Approximating \sqrt{r}.

STEP 1: Let x_{0} be your initial estimate for \sqrt{r}.
STEP 2: Then the next estimate is the average of your most recent estimate and r divided by your most recent estimate.

$$
x_{\text {new }}=\frac{x_{\text {old }}+\frac{r}{x_{\text {old }}}}{2}
$$

STEP 3: Continue calculating terms in the sequence until you reach the level of accuracy desired.

Implementing the Babylonian Algorithm on a TI-83 Calculator

The Babylonian Algorithm to approximate \sqrt{A} is

$$
x_{\text {new }}=\frac{x_{\text {old }}+\frac{A}{x_{\text {old }}}}{2}
$$

- Let's store the value of A

$$
\begin{gathered}
2 \mathrm{STO} \rightarrow \\
\text { ALPHA } \\
1 \mathrm{STO} \rightarrow \\
\mathrm{X} \\
(\mathrm{X}+\text { ALPHA A } \div \mathrm{X}) * 0.5 \\
\mathrm{STO} \rightarrow
\end{gathered} \mathrm{X} .
$$

- Define the recursive step

Press ENTER repeatedly... Write down the results below. (What happens??)

This method is known as a recursive algorithm because your next estimate x_{n+1} is produced using information from your current estimate x_{n}.

The sequence of numbers $x_{1}, x_{2}, x_{3}, \ldots$, hopefully converges to a finte number L, the limit of the sequence.

Newton's Method

Newton's Method is a Calculus-based method for approximating roots. In fact, it derives from the Microscope Approximation,

$$
\Delta y \approx g^{\prime}(a) \Delta x
$$

To use this method to approximate a root r for a function $g(x)$ you need several things:
i) an initial guess x_{0} sufficiently close to the root r,
ii) $g^{\prime}(r) \neq 0$ on an interval $a<x<b$ containing x_{0} and r,
ii) g, g^{\prime}, and $g^{\prime \prime}$ continuous on an interval $a<x<b$ containing x_{0} and r.

Provided these conditions are satisfied, Newton's Method is guaranteed to converge to the root r.

The big question, however, is "HOW CLOSE MUST x_{0} BE TO r ?" While certain formulas involving the second derivative can be given to address this question, in practice you simply run Newton's Method for a number of iterations to determine whether it is converging to the root you want. If you find it is not doing so, pick another value for x_{0}. In lab this week you saw examples of how Newton's Method behaves when x_{0} is sufficiently close to r, as well as what can happen when x_{0} is to far from r.

Deriving Newton's Method from the Microscope Approximation

Suppose we have obtained our nth approximation x_{n} for the root r of g, and we want to find a better approximation x_{n+1}. Ideally, we would like to know

$$
\Delta x=r-x_{n} .
$$

If we knew this exactly, then we could find the root r as $r=x_{n}+\Delta x$.
Since we don't know Δx exactly, we will appeal to the Microscope Approximation based at our current guess x_{n} :

$$
\Delta y \approx g^{\prime}\left(x_{n}\right) \Delta x \quad \Longrightarrow \quad \Delta x \approx \frac{\Delta y}{g^{\prime}\left(x_{n}\right)}
$$

This approximation is valid provided $g^{\prime}\left(x_{n}\right) \neq 0$. But this will be true, provided x_{n} is sufficiently close to r, because we know that $g^{\prime}(r) \neq 0$ and that g^{\prime} is continuous on an open interval $a<r<b$ containing r.

Although we don't know Δx exactly, we do know Δy exactly! This is because we know $g\left(x_{n}\right)$ and we also know that $g(r)=0$, so

$$
\Delta y=
$$

\qquad
\qquad
Therefore,

$$
\Delta x \approx
$$

\qquad
and we choose our next approximation x_{n+1} as

$$
x_{n+1}=
$$

\qquad
Together with an initial guess x_{0}, this recursive process defines Newton's Method. Under the conditions listed above, we are guaranteed that

$$
\lim _{n \rightarrow \infty} x_{n}=r .
$$

Visualizing Newton's Method

Recall that in the lab we derived Newton's Method by considering the equation of the tangent line to a function $h(t)$ at the point $t=t_{0}$ and then considering the root t_{1} of this tangent line to be the approximation to the root t^{*} of the function $h(t)$.
Consider the graph of $h(t)=e^{t / 2}-t-2$ shown below on the interval $-4 \leq t \leq 4$.

1. Draw the tangent line to $h(t)$ at $t_{0}=1$. Extend the tangent line to the t-axis. Label this point t_{1}.
2. Draw the tangent line at $t=t_{1}$. Find its root and label this point t_{2}. Repeat as often as you can.
3. What do you notice about the sequence of points $t_{0}, t_{1}, t_{2}, \ldots$?
4. Visually, how does the limit of your sequence depend on the initial value t_{0} ?
5. Are there any initial values which will cause the sequence to not converge?
6. Let $g(x)=x^{2}-17$. Confirm that g, g^{\prime}, and $g^{\prime \prime}$ are continuous (everywhere), and that $g(x) \neq 0$ on an interval containing the root $r=\sqrt{17}$ and the initial guess $x_{0}=1$. Use three iterations of Newton's Method to approximate the root $r=\sqrt{17}$. For greatest accuracy, record your results as fractions or use the memory registers on you calculator to store intermediate results. Compare this with the value for $\sqrt{17}$ given by your calculator.
n
x_{n}
$\Delta x \approx-g\left(x_{n}\right) / g^{\prime}\left(x_{n}\right)$
0

1

2
3
4

5

6
Question
Do you see any connection between Newton's Method and the ancient Babylonian Algorithm?
(HINT: Try writing down the recursive formula you would need to use Newton's Method to solve find the root of $f(x)=x^{2}-A$.)

