
Math 114 Class 27 Fall 2005

Higher Order Taylor Polynomials
Just about everything in this course so far has been based on local approximation of a differentiable
function f using a linear function (remember: local linearity!). We can approximate values f(x) near
a point x = a linearly using the tangent line. We will refresh our memories to this point in the next
example.

Example

Find the equation of the line tangent to the graph of f(x) = e2x at the point (0, 1). Plot this line
together with the graph of f . Use this tangent line to approximate f(1/2).

Refresher: First-Degree Taylor Polynomials

The equation you just wrote down for the tangent line should have the form

y = P1(x) = f(a) + f ′(a)(x− a).

We have seen this before. We know that the tangent line equation can be referred to as the first-degree
(or first-order) Taylor Polynomial. This has been indicated in the expression above with the notation,
P1(x). The graph of the first-order Taylor polynomial for f about the point a is the line tangent to the
graph of f at the point (a, f(a)). What is true about P1(a)? What is true about P ′

1(a)?

As useful as the tangent line approximation is, it has some limitations. The biggest problem is that
a line doesn’t curve–that is, a line has constant slope everywhere while a curve has different slopes at
each point. We have spent much time in the past several classes sketching solutions to rate equations.
A feature of these solutions we have noticed is their concavity. From this point of view, we can imagine
that it would be useful to have an approximating function that takes the local curvature of a function
into account. This is possible if our function is twice-differentiable. Why?
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Second-Order Taylor Polynomials

What does a second-degree polynomial look like in general?

Remember that the first-degree Taylor polynomial, P1(x) is used to approximate values of f(x) near
(a, f(a)). We saw that P1(x) preserved f ′(a) and f(a). We want similar features in the second-degree
Taylor polynomial P2(x).
Say that we know P2(x) has the general form

P2(x) = c0 + c1(x − a) + c2(x − a)2,

where c0, c2, and c3 are constant coefficients. Does P2(x) match your idea of a second-degree polynomial?
In order that P2(x) resemble f(x) as much as possible for values of x near a, we require that the following
three conditions be met:

P2(a) = f(a), P ′
2(a) = f ′(a), P

′′
2 (a) = f ′′(a).

In other words, this new polynomial will also match the function value and the first derivative value at
(a, f(a)). In addition,it will also match the second derivative value at this point. Now we can use these
conditions to find the coefficients c0, c1, and c2 in terms of f(a), f ′(a), and f ′′(a):

These coefficients give us the following expression for a second-degree Taylor polynomial:

Example Find the second-order Taylor polynomial P2(x) for f(x) = e2x about 0. Add the graph of
this polynomial to your previous plot of f(x) and P1(x). Compare the quality of the approximations to
f(x) by P1(x) and P2(x) for values of x near a = 0.
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A note about the Approximation Error

We saw Taylor’s Theorem before. What did it say?

We can say something similar now. And we will call this new statement the Extended Taylor The-
orem:

Assume we have all the “nice parts” we need to write a function in the following way:

f(a + h) = f(a) + f ′(a)h +
1
2
f ′′(a)h2 + E2(h).

The error associated with the second-order Taylor polynomial has the following properties:

lim
h→0

E2(h) = 0, lim
h→0

E2(h)
h

= 0, lim
h→0

E2(h)
h2

= 0.

Note: The error in this theorem (and in the original Taylor’s Theorem) is also called the “remainder.”

Example For the function f(x) = e2x, find an expression for the second-order Taylor error, E2(h).

Show that the lim
h→0

E2(h) = 0, lim
h→0

E2(h)
h

= 0, lim
h→0

E2(h)
h2

= 0.
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