Derivatives of Inverse Functions

Warm-up

Given two functions $f(x)$ and $g(x)$ which have the relationship that $f(g(x))=x$ and $g(f(x))=x$ use the Chain Rule to show that $f^{\prime}(g(x))=\frac{1}{g^{\prime}(x)}$ and $g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$. What is a word that we could use to describe $f(x)$ and $g(x)$?

Derivative of the Inverse Function

If $g=f^{-1}$, then $x=f(g(x))$. In the usual notation for inverse functions,

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \quad \text { provided } f^{\prime}\left(f^{-1}(x)\right) \neq 0
$$

Graphical Approach

The graph of f^{-1} is the reflection of the graph of f about the line $y=x$.
The line tangent to the graph of f^{-1} at (b, a) is the reflection across the line $y=x$ of the line tangent to the graph of f at (a, b).
If $(d, c) \neq(b, a)$ is on the line tangent to the graph of f^{-1} at (b, a), then $(c, d) \neq(a, b)$ is on the line tangent to the graph of f at (a, b).
The derivative of f^{-1} at b can then be computed as the slope of the line tangent to the graph of f^{-1} at (b, a) :

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{a-c}{b-d}=1 /\left(\frac{b-d}{a-c}\right)=1 / f^{\prime}(a),
$$

the reciprocal of the slope of the line tangent to the graph of f at (a, b).

Examples of the Derivative of an Inverse Function

1. The inverse of the function $f(x)=\tan (x),-\pi / 2 \leq x \leq \pi / 2$ is the function $g(x)=\arctan (x),-\infty<x<+\infty$.
Starting with

$$
\tan (\arctan (x))=x, \quad-\infty<x<+\infty
$$

use the Chain Rule to find $\frac{d}{d x} \arctan (x)$.
To simplify your answer, it will be useful to express the derivative of $\tan (x)=\sin (x) / \cos (x)$ in terms of $\tan (x)$, using the identity $1+\tan ^{2} x=\sec ^{2} x$.
(Extra: prove this identity holds by starting with the identity $\cos ^{2} x+\sin ^{2} x=1$.)
2. The inverse of the function $f(x)=e^{x},-\infty<x<+\infty$ is the function $g(x)=\ln (x), 0<x<\infty$.
Starting with

$$
e^{\ln (x)}=x, \quad 0<x<\infty
$$

use the Chain Rule to find $\frac{d}{d x} \ln (x)$.

The Power Rule for Real Exponents

We can also use the Chain Rule similarly to extend the power rule to its most general form:
THEOREM: If r is any real number and $x>0$, then $\frac{d}{d x} x^{r}=r x^{r-1}$.
Proof:
If $x>0$, then $x^{r}=e^{r \ln x}$; this follows from two properties of exponential and logarithmic functions:

$$
y>0 \Longrightarrow e^{\ln y}=y, \quad \text { and } x>0 \Longrightarrow \ln x^{r}=r \ln x .
$$

Then by the Chain Rule,

$$
\begin{aligned}
\frac{d}{d x} x^{r} \quad & =\frac{d}{d x} e^{r \ln x} \\
= & e^{r \ln x} \frac{d}{d x} r \ln x \\
& =x^{r} \cdot \frac{r}{x} \\
= & r x^{r-1}
\end{aligned}
$$

Examples
If $f(x)=\frac{1}{x^{\pi}}$, write down $f^{\prime}(x)$.

Given $y=x^{\sqrt{2}}$, find $\frac{d x}{d y}$ and $\frac{d y}{d x}$

