Inverses and Identities

Many operations on sets of numbers or functions have an identity element as well as inverses in the set. Important examples include addition, multiplication, and composition of functions.

1. Addition:

(i.) There is exactly one real number a with the property that

$$
a+x=x+a=x
$$

for all $x \in \mathbf{R}$. This number is called the additive identity. The additive identity $a=$
\qquad
(ii.) If b is a real number, there is exactly one real number c such that

$$
b+c=c+b=0
$$

This number, c is called the additive inverse $\mathbf{o f} \mathbf{b}$. For b, the additive inverse is $b=$ \qquad .
(iii.) We can extend these ideas from numbers to functions. There is exactly one function $h: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
h(x)+f(x)=f(x)+h(x)=f(x), \quad \text { for all } f: \mathbb{R} \rightarrow \mathbb{R}
$$

What does the notation, $f: \mathbb{R} \rightarrow \mathbb{R}$ mean?
This function, $h(x)$ is the \qquad for $f(x)$. The formula for $h(x)$ is $h(x)=$ \qquad , for all $x \in \mathbb{R}$.
(iv.) For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ so that

$$
f(x)+g(x)=g(x)+f(x)=h(x)=0
$$

The function $g(x)$ is called the \qquad for the function $f(x)$. In fact, $g(x)=$ \qquad . The graph of $-f(x)$ is obtained by reflecting the graph of $f(x)$ across the \qquad -axis.
On the graph below sketch the graph of $-f(x)$.

Multiplication

(i) There is exactly one real number a with the property that

$$
a \cdot x=x \cdot a=x, \quad \text { for all } x \in \mathbb{R}
$$

This number is the \qquad ; $a=$ \qquad
(ii) If $b \neq 0$ is a real number, there is exactly one real number c such that

$$
b \cdot c=c \cdot b=1
$$

This number is called the \qquad of b. It is written $c=$ \qquad and is also known as the \qquad of b.
(iii) Again, we can extend these ideas from numbers to functions. There is exactly one function $k: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
k(x) \cdot f(x)=f(x) \cdot k(x)=f(x), \quad \text { for all } f: \mathbb{R} \rightarrow \mathbb{R}
$$

This function is the \qquad and has the formula $k(x)=$ \qquad for all $x \in \mathbb{R}$.
(iv) Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ so that

$$
f(x) \cdot g(x)=g(x) \cdot f(x)=k(x)=1 .
$$

In fact, $g(x)=$ \qquad When does this function exist?

Composition of Functions

We don't speak of composing real numbers; this is an operation particular to functions. (i)With respect to composition of functions, there is a special function $I: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
(f \circ I)(x)=(I \circ f)(x)=f(x), \quad \text { for all } f: \mathbb{R} \rightarrow \mathbb{R}
$$

This function is called the \qquad $I(x)=$ for all $x \in \mathbb{R}$.
(ii) There are also functions, $g(x)$ so that, under composition with a function $f(x)$,

$$
(f \circ g)(x)=(g \circ f)(x)=I(x)=x
$$

The function $g(x)$ is called the \qquad of $f(x)$. That is, if g is the inverse of f under composition, then $f(g(x))=g(f(x))=x$ for all x in the domain of f. The inverse of f is generally denoted by $f^{-1}(x)$. When does this function exist?

Question: In general, is the multiplicative inverse of f equal to its inverse under composition, "the inverse" function?

Examples:
(1) Let $f(x)=2 x$. What is its multiplicative inverse? What is its inverse function?
(2) Let $f(x)=\ln (x)$. What is its multiplicative inverse? What is its inverse function?

Graphs of Inverse Functions

Suppose $f(a)=b$. (This means that the point (a, b) is on the graph of f.)
Show that $f^{-1}(b)=a$. (This means that the point (b, a) is on the graph of f^{-1}.)

Use this result to explain why the graph of f^{-1} is the reflection about the line $y=x$ of the graph of f.

Examples: Verify that the following pairs of functions are inverses and sketch the function and its inverse on the same set of axes.
(a) $f(x)=e^{x}, f^{-1}(x)=\ln (x)$.
(b) $g(x)=\tan (x),-\frac{\pi}{2}<x<\frac{\pi}{2}, \quad g^{-1}(x)=\arctan (x):=\tan ^{-1}(x),-1<x<1$.

Does every function have an inverse? Consider $h(x)=\sin (x),-\pi \leq x \leq \pi$.

