Inverses and Identities

Many operations on sets of numbers or functions have an *identity element* as well as *inverses* in the set. Important examples include addition, multiplication, and composition of functions.

1. Addition:

(i.) There is exactly one real number a with the property that

a + x = x + a = x

for all $x \in \mathbf{R}$. This number is called the **additive identity**. The additive identity a =

(ii.) If b is a real number, there is exactly one real number c such that

$$b + c = c + b = 0.$$

This number, c is called the **additive inverse of b**. For b, the additive inverse is b =_____.

(iii.) We can extend these ideas from numbers to functions. There is exactly one function $h: \mathbb{R} \to \mathbb{R}$ such that

$$h(x) + f(x) = f(x) + h(x) = f(x), \text{ for all } f : \mathbb{R} \to \mathbb{R}.$$

What does the notation, $f : \mathbb{R} \to \mathbb{R}$ mean?

This function, h(x) is the _____ for f(x). The formula for h(x) is $h(x) = ____$, for all $x \in \mathbb{R}$.

(*iv.*) For a function $f : \mathbb{R} \to \mathbb{R}$, there is a function $g : \mathbb{R} \to \mathbb{R}$ so that

$$f(x) + g(x) = g(x) + f(x) = h(x) = 0.$$

The function g(x) is called the ______ for the function f(x). In fact, g(x) =______. The graph of -f(x) is obtained by reflecting the graph of f(x) across the _____-axis.

On the graph below sketch the graph of -f(x).

Math 114 Multiplication

Class 19

(i) There is exactly one real number a with the property that

$$a \cdot x = x \cdot a = x$$
, for all $x \in \mathbb{R}$.

This number is the _____; a =____.

(ii) If $b \neq 0$ is a real number, there is exactly one real number c such that

$$b \cdot c = c \cdot b = 1.$$

This number is called the ______ of b. It is written c = _____ and is also known as the ______ of b.

(*iii*) Again, we can extend these ideas from numbers to functions. There is exactly one function $k : \mathbb{R} \to \mathbb{R}$ such that

$$k(x) \cdot f(x) = f(x) \cdot k(x) = f(x), \text{ for all } f : \mathbb{R} \to \mathbb{R}$$

This function is the _____ and has the formula k(x) =_____ for all $x \in \mathbb{R}$.

(*iv*) Given a function $f : \mathbb{R} \to \mathbb{R}$, there is a function $g : \mathbb{R} \to \mathbb{R}$ so that

$$f(x) \cdot g(x) = g(x) \cdot f(x) = k(x) = 1.$$

In fact, g(x) =______. When does this function exist?

Composition of Functions

We don't speak of composing real numbers; this is an operation particular to functions. (i)With respect to composition of functions, there is a special function $I : \mathbb{R} \to \mathbb{R}$ such that

$$(f \circ I)(x) = (I \circ f)(x) = f(x), \text{ for all } f : \mathbb{R} \to \mathbb{R}.$$

This function is called the ______. I(x) =______. for all $x \in \mathbb{R}$.

Math 114

Class 19

(ii) There are also functions, g(x) so that, under composition with a function f(x),

$$(f \circ g)(x) = (g \circ f)(x) = I(x) = x.$$

The function g(x) is called the ______ of f(x). That is, if g is the inverse of f under composition, then f(g(x)) = g(f(x)) = x for all x in the domain of f. The inverse of f is generally denoted by $f^{-1}(x)$. When does this function exist?

Question: In general, is the multiplicative inverse of f equal to its inverse under composition, "the inverse" function?

Examples:

(1) Let f(x) = 2x. What is its multiplicative inverse? What is its inverse function?

(2) Let $f(x) = \ln(x)$. What is its multiplicative inverse? What is its inverse function?

Graphs of Inverse Functions

Suppose f(a) = b. (This means that the point (a, b) is on the graph of f.) Show that $f^{-1}(b) = a$. (This means that the point (b, a) is on the graph of f^{-1} .)

Use this result to explain why the graph of f^{-1} is the *reflection about the line* y = x of the graph of f.

Examples: Verify that the following pairs of functions are inverses and sketch the function and its inverse on the same set of axes.

(a)
$$f(x) = e^x$$
, $f^{-1}(x) = \ln(x)$.

(b)
$$g(x) = \tan(x), -\frac{\pi}{2} < x < \frac{\pi}{2}, \quad g^{-1}(x) = \arctan(x) := \tan^{-1}(x), -1 < x < 1.$$

Does every function have an inverse? Consider $h(x) = \sin(x), -\pi \le x \le \pi$.