Inverse Functions

Inverses and Identities

Many operations on sets of numbers or functions have an *identity element* and *inverses* in the set. Important examples include addition, multiplication, and composition of functions.

Addition

There is exactly one real number a with the property that

$$a + x = x + a = x$$
, for all $x \in \mathbf{R}$.

This number, the *additive identity*, is a = 0.

If b is a real number, there is exactly one real number c such that

$$b + c = c + b = 0.$$

This number, the *additive inverse* of b, is c = -b.

We can extend these ideas from numbers to functions. There is exactly one function $h: \mathbf{R} \to \mathbf{R}$ such that

$$h(x) + f(x) = f(x) + h(x) = f(x)$$
, for all $f : \mathbf{R} \to \mathbf{R}$.

This function, the *additive identity* for functions, has the formula h(x) = 0, for all $x \in \mathbf{R}$.

The *additive inverse* of the function f is the function g such that

$$f(x) + g(x) = g(x) + f(x) = h(x) = 0.$$

In fact, g(x) = -f(x). The graph of -f(x) is obtained by reflecting the graph of f(x) across the x-axis.

Multiplication

There is exactly one real number a with the property that

$$a \cdot x = x \cdot a = x$$
, for all $x \in \mathbf{R}$.

This number, the *multiplicative identity*, is a = 1.

If $b \neq 0$ is a real number, there is exactly one real number c such that

$$b \cdot c = c \cdot b = 1.$$

This number, the multiplicative inverse of b, is $c = b^{-1} = 1/b$, the reciprocal of b.

Math 114

Class 19

We can extend these ideas from numbers to functions. There is exactly one function $k : \mathbf{R} \to \mathbf{R}$ such that

$$k(x) \cdot f(x) = f(x) \cdot k(x) = f(x), \text{ for all } f: \mathbf{R} \to \mathbf{R}$$

This function, the *multiplicative identity* for functions, has the formula k(x) = 1, for all $x \in \mathbf{R}$.

The multiplicative inverse of the function f is the function g such that

$$f(x) \cdot g(x) = g(x) \cdot f(x) = k(x) = 1.$$

In fact, $g(x) = [f(x)]^{-1} = 1/f(x)$, which exists for all x in the domain of f for which $f(x) \neq 0$.

Composition of Functions

This operation has no counterpart for real numbers. Recall that $(f \circ g)(x) = f(g(x))$. The *identity function* (under composition) is the function $\iota : \mathbf{R} \to \mathbf{R}$ such that

$$(f \circ \iota)(x) = (\iota \circ f)(x) = f(x), \text{ for all } f: \mathbf{R} \to \mathbf{R}.$$

The formula for ι is $\iota(x) = x$, for all $x \in \mathbf{R}$.

The function g is the *inverse* of f (under composition) if

$$(f \circ g)(x) = (g \circ f)(x) = \iota(x) = x,$$

That is, if g is the inverse of f under composition, then f(g(x)) = g(f(x)) = x for all x in the domain of f. The inverse of f is generally denoted by $f^{-1}(x)$.

NOTE: In general, the multiplicative inverse of f is not 'the inverse "of f:

$$[f(x)]^{-1} \neq f^{-1}(x)$$

Example

The natural logarithm $g(x) = \ln(x)$ is the inverse of the exponential function $f(x) = e^x$:

$$e^{\ln(x)} = \ln(e^x) = x$$
 but $\ln(x) \neq \frac{1}{e^x} = (e^x)^{-1}$.

Math 114

Graphs of Inverse Functions

- 1. Suppose f(a) = b. (This means that the point (a, b) is on the graph of f.) Show that $f^{-1}(b) = a$. (This means that the point (b, a) is on the graph of f^{-1} .)
- 2. Use this result to explain why the graph of f^{-1} is the reflection about the line y = x of the graph of f.

Example: $f(x) = e^x$, $f^{-1}(x) = \ln(x)$.

Example: $g(x) = \sin(x), -\frac{\pi}{2} \le x \le \frac{\pi}{2}, \quad g^{-1}(x) = \arcsin(x) := \sin^{-1}(x), \ -1 \le x \le 1.$

3. Does every function have an inverse? Consider $h(x) = \sin(x), -\pi \le x \le \pi$.