Inverse Functions

Inverses and Identities

Many operations on sets of numbers or functions have an identity element and inverses in the set. Important examples include addition, multiplication, and composition of functions.

Addition

There is exactly one real number a with the property that

$$
a+x=x+a=x, \quad \text { for all } x \in \mathbf{R}
$$

This number, the additive identity, is $a=0$.
If b is a real number, there is exactly one real number c such that

$$
b+c=c+b=0
$$

This number, the additive inverse of b, is $c=-b$.
We can extend these ideas from numbers to functions. There is exactly one function $h: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
h(x)+f(x)=f(x)+h(x)=f(x), \quad \text { for all } f: \mathbf{R} \rightarrow \mathbf{R} .
$$

This function, the additive identity for functions, has the formula $h(x)=0$, for all $x \in \mathbf{R}$.
The additive inverse of the function f is the function g such that

$$
f(x)+g(x)=g(x)+f(x)=h(x)=0 .
$$

In fact, $g(x)=-f(x)$. The graph of $-f(x)$ is obtained by reflecting the graph of $f(x)$ across the x-axis.

Multiplication

There is exactly one real number a with the property that

$$
a \cdot x=x \cdot a=x, \quad \text { for all } x \in \mathbf{R} .
$$

This number, the multiplicative identity, is $a=1$.
If $b \neq 0$ is a real number, there is exactly one real number c such that

$$
b \cdot c=c \cdot b=1
$$

This number, the multiplicative inverse of b, is $c=b^{-1}=1 / b$, the reciprocal of b.

We can extend these ideas from numbers to functions. There is exactly one function $k: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
k(x) \cdot f(x)=f(x) \cdot k(x)=f(x), \quad \text { for all } f: \mathbf{R} \rightarrow \mathbf{R}
$$

This function, the multiplicative identity for functions, has the formula $k(x)=1$, for all $x \in \mathbf{R}$.

The multiplicative inverse of the function f is the function g such that

$$
f(x) \cdot g(x)=g(x) \cdot f(x)=k(x)=1 .
$$

In fact, $g(x)=[f(x)]^{-1}=1 / f(x)$, which exists for all x in the domain of f for which $f(x) \neq 0$.

Composition of Functions

This operation has no counterpart for real numbers. Recall that $(f \circ g)(x)=f(g(x))$. The identity function (under composition) is the function $\iota: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
(f \circ \iota)(x)=(\iota \circ f)(x)=f(x), \quad \text { for all } f: \mathbf{R} \rightarrow \mathbf{R} .
$$

The formula for ι is $\iota(x)=x$, for all $x \in \mathbf{R}$.

The function g is the inverse of f (under composition) if

$$
(f \circ g)(x)=(g \circ f)(x)=\iota(x)=x
$$

That is, if g is the inverse of f under composition, then $f(g(x))=g(f(x))=x$ for all x in the domain of f. The inverse of f is generally denoted by $f^{-1}(x)$.

NOTE: In general, the multiplicative inverse of f is not 'the inverse "of f :

$$
[f(x)]^{-1} \neq f^{-1}(x)
$$

Example

The natural logarithm $g(x)=\ln (x)$ is the inverse of the exponential function $f(x)=e^{x}$:

$$
e^{\ln (x)}=\ln \left(e^{x}\right)=x \quad \text { but } \quad \ln (x) \neq \frac{1}{e^{x}}=\left(e^{x}\right)^{-1}
$$

Graphs of Inverse Functions

1. Suppose $f(a)=b$. (This means that the point (a, b) is on the graph of f.) Show that $f^{-1}(b)=a$. (This means that the point (b, a) is on the graph of f^{-1}.)
2. Use this result to explain why the graph of f^{-1} is the reflection about the line $y=x$ of the graph of f.

Example: $f(x)=e^{x}, f^{-1}(x)=\ln (x)$.

Example: $g(x)=\sin (x),-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, \quad g^{-1}(x)=\arcsin (x):=\sin ^{-1}(x),-1 \leq x \leq 1$.
3. Does every function have an inverse? Consider $h(x)=\sin (x),-\pi \leq x \leq \pi$.

