## Introduction to the S-I-R Model of Disease

Suppose we want to model the spread of an infectious disease (like measles).

Simplifying assumptions:

- Nobody dies from it!
- Recovery always takes 14 days.
- You're contagious during those 14 days.
- You cannot get it twice.


## Notation:

$I=$ number of infected people.
$R=$ number of recovered people (i.e., already had it).
$S=$ number of susceptible people (i.e., haven't had it yet).

Rates of change: $I^{\prime}(t), R^{\prime}(t), S^{\prime}(t)$.
Units: $\qquad$ per day.

Q: If $I$ people are currently infected, how many of them do you expect will recover today?
$\qquad$ -

So,

$$
R^{\prime}(t)=
$$

True of false?
$I^{\prime}(t)=$ number of people who get infected per day.
$S^{\prime}(t)=-($ number of people who get infected per day).

To write an equation for $S^{\prime}(t)$, first note that on any given day, the number of people who get infected depends on the number of susceptible people who come into contact with infected people: -If everything else was the same except there were twice as many susceptible people, how would this affect the number of people who become infected?

So,

$$
S^{\prime}(t) \text { is proportional to }
$$

-If everything else was the same except there were twice as many infected people, how would this affect the number of people who become infected?
So,

$$
S^{\prime}(t) \text { is proportional to }
$$

These combine to give

$$
S^{\prime}(t)=
$$

Why multiplied? Let's think about it from a different perspective. If $k$ is the proportional number of contacts that an infected person has, and $S(t)$ is the number of susceptible people, then

The rate of people beoming infected (for every infected person) is

If we multiply this by the number of infected people, we get:

What about $I^{\prime}(t)$ ? It should equal
(number of people who get infected per day) - (number of people who $\qquad$ ).

So,

$$
I^{\prime}(t)=
$$

Given

$$
\begin{aligned}
S^{\prime} & =-0.00001 S I \\
I^{\prime} & =0.00001 S I-(1 / 14) I \\
R^{\prime} & =(1 / 14) I \\
S_{0}=35000 \quad I_{0} & =100 \quad R_{0}=4900
\end{aligned}
$$

## GROUPWORK

1. In small groups, try to develop IVPs for the following situations which modify the given S-I-R model above.
a. Vaccination. A modification of the original SIR model above after a partially successful vaccine is given to the population which cuts the infectiousness down to one quarter of its present infectiousness.
b. Improve treatment. A modification of the original SIR model after a treatment is discovered which reduces the time one is sick to 3 days.
c. Immunity Loss. A modification of the original SIR model so that 1 out of every 200 persons who recover become susceptible again.
d. Death. A modification of the initial SIR model so that 1 out of every 30 persons who are infected dies, the rest recover.
