Lab Time:

Your Name:
GOAL: This quiz is designed to illuminate your understanding of how to analyze the graphical behavior of functions in terms of extrema, concavity and derivatives..

1. (12 points) Multiple Choice. Indicate your answer to the following multiple choice questions (1 point) by selecting the appropriate box. Your explanation of your answer is worth 2 points.
(a). Which of the following statements is always true?
(A) \square All local extrema are also global extrema.
(B) \square All global extrema are also local extrema.
(C)Some global extrema are local extrema.
(D)No local extrema are global extrema.
(E)None of the above statements is true.
(b). Consider an unknown function $g(x)$ where $g^{\prime}(x)=x^{2}(x-2)$. It has
(A) \square no inflection points.
(B)one inflection point.
(C)two inflection points.
(D)three inflection points.
(E)an unknowable number of inflection points.
(c). Consider an unknown function $g(x)$ where $g^{\prime}(x)=x^{2}(x-2)$. It has
(A)no critical points.
(B)one critical point.
(C)two critical points.
(D)three critical points.
(E)an unknowable number of inflection points.
(d). Consider an unknown function $M(x)$ where all you know is that $M(x)$ is decreasing at every point in the interval $[0,3]$. Which of the following must be true?
(A)$M(x)$ has a local minimum at $x=2$.
(B)$M(x)$ has a global minimum at $x=2$.
(C)$M(x)$ has a local maximum at $x=2$.
(D)$M(x)$ has a global maximum at $x=2$.
(E)More than one of the above statements must be true.

2. (8 points) Consider the graph of the function $f(x)=e^{-0.2 x} \sin (x)$ on $[0,5]$. Label all local maxima with LMax; similarly, label all local minima with LMin. Then, label all global maxima with GMax; similarly, label all global minima with GMin.

BONUS (5 points) Consider the function $F(x)=x^{2} e^{-x}$. Sketch a graph of the function $F(x)$ on its domain after clearly identifying the locations of all extrema and inflection points.

