Lab Time:

Your Name:

GOAL: This quiz is designed to illuminate your understanding of how to analyze the graphical behavior of functions in terms of extrema, concavity and derivatives.

1. (*12 points*) **Multiple Choice**. Indicate your answer to the following multiple choice questions (1 point) by selecting the appropriate box. Your explanation of your answer is worth 2 points.

- (a). Which of the following statements is always true?
- (A) \square All local extrema are also global extrema.
- (B) \square All global extrema are also local extrema.
- (C) \square Some global extrema are local extrema.
- (D) \square No local extrema are global extrema.
- (E) \Box None of the above statements is true.
- (b). Consider an unknown function g(x) where $g'(x) = x^2(x-2)$. It has
- (A) \square no inflection points.
- (B) \Box one inflection point.
- (C) \square two inflection points.
- (D) \Box three inflection points.
- (E) \Box an unknowable number of inflection points.

(c). Consider an unknown function g(x) where $g'(x) = x^2(x-2)$. It has

- (A) \square no critical points.
- (B) \square one critical point.
- (C) \Box two critical points.
- (D) \Box three critical points.
- (E) \square an unknowable number of inflection points.

(d). Consider an unknown function M(x) where all you know is that M(x) is decreasing at every point in the interval [0,3]. Which of the following must be true?

- (A) $\Box M(x)$ has a local minimum at x = 2.
- (B) $\Box M(x)$ has a global minimum at x = 2.
- (C) $\Box M(x)$ has a local maximum at x = 2.
- (D) $\Box M(x)$ has a global maximum at x = 2.
- (E) \Box More than one of the above statements must be true.

2. (8 points) Consider the graph of the function $f(x) = e^{-0.2x} \sin(x)$ on [0, 5]. Label **all** local maxima with **LMax**; similarly, label **all** local minima with **LMin**. Then, label **all** global maxima with **GMax**; similarly, label **all** global minima with **GMin**.

BONUS (5 points) Consider the function $F(x) = x^2 e^{-x}$. Sketch a graph of the function F(x) on its domain after clearly identifying the locations of all extrema and inflection points.