1. Use the rules of differentiation to find the first derivative for the following functions. **DO NOT SIMPLIFY YOUR ANSWER.**

(a)
$$f(t) = t^{7/2} - 3t + 5$$

(b)
$$y = \frac{e^x}{x}$$

(c)
$$g(x) = \sqrt[3]{(1-x^3)^2}$$

(d)
$$z = 2^x \ln x$$

(e)
$$h(x) = \frac{\ln(\sin(2x))}{\tan(x)}$$

- 2. Use the **limit definition** of the derivative to find the derivative of the function $f(x) = \frac{1}{x-2}$. Show all of your work!
- 3. Find the equation for the line tangent line to the graph of $q(x) = \frac{3^x}{x}$ at the point (1,3).
- 4. What is the microscope approximation for $y = \sin(x)$ at the point $\left(\frac{\pi}{12}, \frac{\sqrt{6} \sqrt{2}}{4}\right)$?

Use this microscope approximation to estimate $\sin\left(\frac{1}{4}\right)$.

5. A textbook has been dropped from a cliff! Using the table of values given below, make an estimate of the instantaneous velocity of the textbook at time t=2 seconds. Justify your answer in writing.

Time	Height		
t	h(t)		
2.0000	936.00000000		
2.0001	935.99359984		
2.0010	935.93598400		
2.0100	935.35840000		
2.1000	929.44000000		
3.0000	856.00000000		

6. Consider the equation $y^2 + xy - x^2 = 5$. Find $\frac{dy}{dx}$ at the point (1, 2) and also at the point (1, -3).

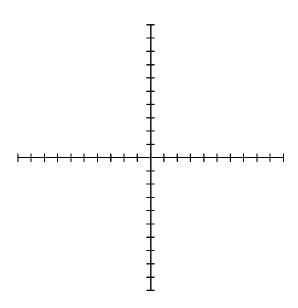
7. Below is a simple polynomial function and its first two derivatives (in factored form)

$$f(x) = x^{4} - 4x^{3} + 16x$$

$$f'(x) = 4(x+1)(x-2)^{2}$$

$$f''(x) = 12x(x-2)$$

- (a) Determine on what intervals the function f(x) is increasing.
- (b) Determine where the function f(x) has relative extrema.
- (c) Determine on what intervals the function f(x) is concave down.
- (d) Determine where the function f(x) has points of inflection.
- (e) One of the x-intercepts of the function f(x) is x = 0. The other one lies between -2 and -1. Use Newton's Method with an initial guess of $x_1 = -2$ to find the other intercept to two decimal places.
- (f) Graph the function f(x) below, labeling your scale and all important points (intercepts, extrema, points of inflection, etc.).



8. Consider the Initial Value Problem (IVP)

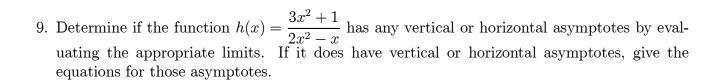
$$C' = -2C$$

$$C(0) = 1.$$

(a) Use Euler's method with a time step of $\Delta t = \frac{1}{10}$ to fill in the empty boxes in the table below and find an estimate of $C\left(\frac{1}{3}\right)$.

t	C	C'	ΔC
0	1	XXXXXXXX XXXXXXXX XXXXXXXX	XXXXXXXX XXXXXXXX XXXXXXXX
0.1	<u>4</u> 5		
0.2			
0.3			
0.4	256 625	XXXXXXXX XXXXXXXX XXXXXXXX	XXXXXXXX XXXXXXXX XXXXXXXX

- (b) Verify that $c(t) = e^{-2t}$ is the solution to the IVP above. Show all of your work. Then use your calculator to compute $c\left(\frac{1}{3}\right)$.
- (c) Graph the piecewise linear approximate solution you found using Euler's Method as well as the actual solution c(t) on the same plot, for $0 \le t \le 0.4$.



10. On the interval
$$[-1, 2]$$
, find the x-values where the global maximum and minimum occur for the function $f(x) = x^4 - 4x^3 + 3x^2$.

11. Suppose $y' = y \ln(y)$ for y > 0. Find a formula for y'' in terms of y. Find equilibrium value(s) and possible inflection value(s). Make a table to indicate how the slope and concavity of y behave for different values of y, then use this table to sketch approximate solutions to the rate equation.

12. Of all rectangles with area A, which has the shortest diagonals?