Name

Geometric Series Look at this infinite series:

$$
S=1-1+1-1+1-1+1 \ldots
$$

We ask: Does it have a sum? Multiply S through by -1 to get -S. Write down the expression for -S. What happens?

Now substract -S from S to get 2 S . What happens to the terms of the series? Show how this allows you to "prove" that the sum is $1 / 2$.

Now have a look at S like this:

$$
S=(1-1)+(1-1)+(1-1)+(1-\ldots .
$$

What do you think the sum is now?
Can you think of a way to group the elements so that the sum may be thought to be 1? Explain.

Here's another series. It is an example of a Geometric Series.

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

What is the pattern here?

- What is the sum of the first two terms?
- What is the sum of the first three terms?
- What is the sum of the first four terms?
- What is the sum of the first five terms?
- Do you think these "partial sums" getting closer and closer to some number? What is it?
- This is an example of a geometric series. What is the ratio of consecutive terms? What is THE (entire) sum?

