Name: _____ Wed 14 Mar 2001

Closed book. Closed Notes. Only the Definitions-Theorems handout allowed, for problems 2-5. 20 points per problem. Please write very legibly.

- 1. Give the definition of each of the following.
 - (a) A **connected** topological space.
 - (b) An **open cover** of a subset A of a topological space X.
 - (c) Given topological spaces X and Y, the **product topology** on $X \times Y$.
- 2. In this problem, just find an appropriate map; you do not need to prove it's a homeomorphism.
 - (a) Prove that any two closed intervals [a, b] and [c, d] are homeomorphic.
 - (b) Let D be the quotient space $\mathbb{R}/\{x \sim (x+1)\}$. Which familiar topological space is D homeomorphic to? Find a homeomorphism to support your answer. (Don't forget to show your map is well-defined.)
- 3. Prove the following theorem: The continuous image of a connected set is connected; i.e, if $f: X \to Y$ is a continuous map between topological spaces, and if X is connected, then f(X) is connected.
- 4. Let X_1 and X_2 be topological spaces. For each i = 1, 2, we define the **projection map** $\pi_i : X_1 \times X_2 \to X_i$ by $\pi_i(x_1, x_2) = x_i$. Prove that every projection map is continuous.
- 5. Prove that a closed subset of a compact topological space is compact. (Hint: Let A be a closed subset of X. If F covers A, then $F \cup \{X A\}$ covers X; why?)