Name: ____

Wed 14 Feb 2001

Closed book. Closed Notes. 25 points per problem. Please write very legibly.

- 1. (a) (5 points) Give the definition of a **closed subset** of a metric space. Write a complete and grammatically correct sentence.
 - (b) (20 points) Show by example that the union of an infinite collection of closed subsets of a metric space is not necessarily closed.
- 2. (a) (5 points) Give the definition of a **continuous map** from one metric space to another. Write a complete and grammatically correct sentence.
 - (b) (20 points) Suppose (X_1, d_1) and (X_2, d_2) are metric spaces, and suppose $f : X_1 \to X_2$ is a function such that the preimage of every open set is open, i.e., for every open set $A_2 \subset X_2$, $f^{-1}(A_2)$ is open in X_1 . Prove that f is continuous.
- 3. (a) (5 points) Give the definition of an **open subset** of a metric space. Write a complete and grammatically correct sentence.
 - (b) (20 points) Let (X, d) be a metric space. Let p_1, p_2, \dots, p_n be arbitrary points in X. Prove that the set $X \{p_1, p_2, \dots, p_n\}$ is an open subset of X. Prove everything from definitions; i.e., you may not use any theorems or homework problems without providing proofs for them here.
- 4. (a) (20 points) Show that Figure (a) can be deformed into Figure (b) (or vice versa).
 - (b) (5 points) Show that Figure (b) can be deformed into Figure (c) (or vice versa).