- 1. Let $Y = \overline{B_5(0,0)} B_1(0,0) \subset \mathbb{R}^2$. In the following, prove that $g \sim h$, and $h \approx j$. (i) $g: I \to Y$ is defined by g(t) = (4,0). (ii) $h: I \to Y$ is defined by $h(t) = (3,0) + (\cos(2\pi t), \sin(2\pi t))$.
 - (iii) $j: I \to Y$ is defined by $j(t) = (-3, 0) + (\cos(2\pi t), \sin(2\pi t)).$
- - (b) It is also true that \sim is an equivalence relation. In your proof above, what would you need to change, and what would you keep the same, in order to prove this?

Definition Let X be a topological space. A loop whose image is just one point in X is called a **trivial loop**. A loop is said to be **null-homotopic** iff it is homotopic to a trivial loop in X.

(For example, you can probably intuitively see that every loop in \mathbb{R}^2 is null-homotopic.)

3. (a) Prove that any two loops in \mathbb{R}^2 are homotopic to each other!

Hint: Step 1: Show every loop $f: I \to \mathbb{R}^2$ is null-homotopic, as follows. Let p(t) = (0,0) be the trivial loop whose image is the origin. Let H(x,t) = tf(x,t). Explain why $H_0 = p$, and $H_1 = f$.

Step 2: By the above, \sim is an equivalence relation. Use this together with Step 1 to finish the problem.

- (b) Draw three loops on the torus, T^2 , such that no two of them are homotopic to each other. (No proof necessary). Can you find more than three?
- 4. Recall that $\mathbb{R}P^2$ is defined as (this is one of two definitions we have seen): the closed unit disk with **antipodal** (i.e., opposite) points on its boundary identified; $\mathbb{R}P^2 = D^2/\{\forall x \in \partial D^2, x \sim -x\}$. Let $q: D^2 \to \mathbb{R}P^2$ be the quotient map.
 - (a) Let A be the horizontal diagonal in D^2 , i.e., $A = [-1, 1] \times \{0\} \subset D^2$. Let $\alpha = q(A) \subset \mathbb{RP}^2$. Then α is a closed curve in \mathbb{RP}^2 . Why? Technically, α is not really a loop. Why?
 - (b) Give a homeomorphism h from I to A.
 - (c) Explain why the composition $q \circ h$ is a loop in $\mathbb{R}P^2$. What is the image of this loop? Do you think this loop is null-homotopic (just Y or N, without proof)?
 - (d) Define $g: I \to D^2$ by $g(t) = (\cos(2\pi t), \sin(2\pi t))$. Then $q \circ g$ is a loop in \mathbb{RP}^2 . Why? Prove that the loop $q \circ g$ is null-homotopic.