- 1. Let $A = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x, y, z \le 1 \text{ and at least two of } x, y, z \text{ are in the set } \{0,1\} \}$. Let $F = \partial(\overline{N_{0,1}(X)})$. Show, using pictures, that $F \simeq nT^2$ for some n.
- 2. Let (X, d) be a metric space, and let $A \subset X$. True or False: $\forall \epsilon > 0, N_{\epsilon}(A) = \bigcup_{a \in A} B_{\epsilon}(a)$. Prove your answer.
- 3. Take a strip of paper and glue its two shorter edges in such a way as to create a Möbius band. In the following, let $M = [0,1]^2 / \{(0,y) \sim (1,1-y)\}$ denote the Möbius band, and let $q : [0,1]^2 \to M$ be the corresponding quotient map. Let $A = [0,1] \times \{1/2\} \subset [0,1]^2$.
 - (a) Explain why $q(A) \subset M$ is a circle. Draw this circle on the Möbius band that you created. We call this circle the **core** of the Möbius band.
 - (b) Use a pair of scissors to cut your Möbius band along its core. Is this a separating circle? Use schematic diagrams to prove your answer.
 - (c) Let $B = [0,1] \times \{1/4\} \cup [0,1] \times \{3/4\}$. Is q(B) a circle? Use diagrams to explain.
 - (d) Create a new Möbius band, and draw q(B) on it. *Before* cutting along it, draw diagrams to try to predict whether or not M q(B) is connected. Now cut. Was your prediction correct? Draw diagrams to explain why q(B) does or does not separate M.
- 4. Although it may seem intuitively obvious, the following theorem is actually very difficult to prove rigorously! Use it to prove that every embedded circle in the 2-sphere separates the 2-sphere.

Jordan Curve Theorem: Every embedded circle $C \subset \mathbb{R}^2$ separates \mathbb{R}^2 .

- 5. Let $f : X \to Y$ be a homeomorphism between topological spaces. True or false: If $A \subset X$ separates X, then f(A) separates Y. Prove your answer.
- 6. Prove, without using Theorem 2 of Section 9, that $\mathbb{RP}^2 \not\simeq S^2$. Hint: (i) Every circle $C \subset S^2$ separates S^2 ; why? (ii) Show that there exists a non-separating circle $C \subset \mathbb{RP}^2$ (from above we know that the Möbius band has a non-separating circle). (iii) Assume $\mathbb{RP}^2 \simeq S^2$, and use (i) and (ii) to get a contradiction.
- 7. (a) Prove that gluing two Möbius bands along their circle-boundaries yields a Klein bottle: $M \cup_{\partial} M \simeq K$. (You may or may not find it easier to prove that the Klein bottle can be cut up into two Möbius bands.)
 - (b) Prove that the Klein bottle is homeomorphic to the connected sum of two projective planes.
 - (c) Use the Extra Credit Problem below to prove that $T^2 \# \mathbb{R} \mathbb{P}^2 \simeq K \# \mathbb{R} \mathbb{P}^2$.
- 8. (a) It is possible to travel in \mathbb{R}^3 from the point (-1, 0, 0) to the point (1, 0, 0) by walking along straight line segments and without ever touching the *y*-axis. Explain how.
 - (b) It is possible to travel in \mathbb{R}^4 from the point (-1, 0, 0, 0) to the point (1, 0, 0, 0) by walking along straight line segments and without ever touching the *yz*-plane. Explain how.

Challenge Problem

9. Prove that $T^2 \# \mathbb{R}P^2 \simeq 3\mathbb{R}P^2$.