1. Which of the following letters, when viewed as subsets of \mathbb{R}^2 , are manifolds? Give a brief explanation for each one that is not a manifold.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

- 2. How many non-homeomorphic 1-manifolds do you think there are? List as many as you can think of.
- 3. Is an open ball minus its center a manifold? More precisely, let $x \in \mathbb{R}^n$, r > 0. Is $B_r(x) \{x\}$ a manifold? Prove your answer.
- 4. (a) Is S¹/{(1,0) ~ (−1,0)} a manifold? Explain.
 (b) Is S¹/{(x,y) ~ (−x, −y)} a manifold? Explain.
- 5. State which of the following spaces are homeomorphic to each other. You do not need to prove your answers; but give brief explanation or draw pictures (or both) to support them.

(a) $X = \overline{B_1(0,0)} \subset \mathbb{R}^2$ (i.e., X is the closed unit disk in the plane).

(b) $Y = X - B_{0.5}(0,0)$. (c) Y° (the interior of Y, where Y is viewed as a subspace of \mathbb{R}^2). (d) $X/\partial X$. (This means identify the whole boundary of X into one point – recall that $\partial X = S^1$.) (e) $S^1 \times [0,1]$. (f) $S^1 \times (0,1)$. (g) $S^1 \times [0,1)$. (h) $S^1 \times \mathbb{R}$. (i) \mathbb{R}^2 (j) $S^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$. (k) $S^2 - \{(1,0,0)\}$. (l) $S^2 - \{(1,0,0), (-1,0,0)\}$. (m) $S^2 - B_{0.5}(1,0,0)$.