- 1. (a) Let $X_1 = \mathbb{R}$, $\mathcal{T}_1 = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\mathbb{R}, \phi\}$. Prove that \mathcal{T}_1 is a topology.
 - (b) Let (X_2, \mathcal{T}_2) be \mathbb{R} with the standard topology (i.e., the topology induced by the Euclidean metric). Let $f : X_1 \to X_2$ and $g : X_2 \to X_1$ be given by f(x) = x and g(x) = x. Is f continuous? Is g continuous? Prove your answers.
- 2. For i = 1, 2, let (X_i, \mathcal{T}_i) be a topological space.
 - (a) Show that if \mathcal{T}_1 is the discrete topology, then every function $f: X_1 \to X_2$ is continuous.
 - (b) Show that if \mathcal{T}_2 is the indiscrete topology, then every function $f: X_1 \to X_2$ is continuous.
- 3. For i = 1, 2, 3, let (X_i, \mathcal{T}_i) be a topological space. Let $f : X_1 \to X_2$ and $g : X_2 \to X_3$ be continuous maps. Prove that their composition $g \circ f : X_1 \to X_3$ is continuous.