Name: _____

Tue 8 Apr2001

Do **only six** of the following problems. 20 points per problem. Closed book. Closed Notes. Only the Definitions-Theorems handout allowed. Please write very legibly.

- 1. (a) Let $A \subset \mathbb{R}$. Prove rigorously that if a, b, c are real numbers such that $a < b < c, a, c \in A$, and $b \notin A$, then A is not connected.
 - (b) (Intermediate Value Theorem) Let X be a connected topological space, $f : X \to \mathbb{R}$ a continuous map. Show that $\forall x, z \in X$, if $f(x) \leq f(z)$, then $\forall b \in [f(x), f(z)], \exists y \in X$ such that f(y) = b.
- 2. In this problem you don't have to prove your maps are continuous or homeomorphisms; just briefly explain your thoughts!
 - (a) Give a continuous map $f: (0,1) \to (0,1)$ with no fixed points.
 - (b) Give a homeomorphism $f: (0,1) \to (0,1)$ with no fixed points. (Hint: shift every point to the right in such a way that the closer a point is to 0 or 1, the less it gets shifted.)
- 3. Prove that \approx ("is isotopic to") is an equivalence relation.
- 4. (a) Draw (without proof) four loops on a torus so that one of them is null-homotopic, and no two of them are homotopic to each other.
 - (b) Find (without proof) an equivalence relation R on $I^2 = [0,1] \times [0,1]$ such that I^2/R is homeomorphic to a torus.
 - (c) Let $q: I^2 \to T$ be the quotient map that you get from R above. Find (without proof) four paths, $f_i: I \to I^2$, i = 1, 2, 3, 4, such that the maps $q \circ f_i$ are loops whose images "roughly look like" your four loops in part (a) above.
 - (d) Give a homotopy to show the loop you claimed above is null-homotopic indeed is null-homotopic. (Give the homotopy as a map, not just pictures.)
- 5. (a) Let $D \subset S^2$ be an open disk of radius ϵ , where ϵ is some small positive number (say 0.1). Prove that $(S^2 \times S^1) - (D \times S^1)$ is homeomorphic to a solid torus.
 - (b) Let $D' \subset S^2$ be another open disk of radius ϵ such that \overline{D} is disjoint from $\overline{D'}$. Explain (using words and pictures) why $(S^2 \times S^1) [(D \times S^1) \cup (D' \times S^1)] \simeq T^2 \times I$.
- 6. (a) Use diagrams, with explanations wherever appropriate, to show that gluing two Möbius bands along their circle boundaries yields a Klein bottle: $M \cup_{\partial} M \simeq K$.
 - (b) Let D be an open disk on a torus T. Describe the closed surface obtained by gluing T-D and a Möbius band along their circle boundaries; more precisely, find n such that $(T-D) \cup_{\partial} M$ is homeomorphic to nT^2 or $n\mathbb{R}P^2$. Explain your reasoning.
- 7. Let $f: X \to Y$ be a continuous map between topological spaces.
 - (a) Show that if X is compact, then f(X) is compact.
 - (b) True or false? If f(X) is compact, then X is compact. Prove your answer.