
Section 11: Working with higher dimensions. Math 460 Topology. Spring 2001

Suppose we were 2-dimensional creatures, living in R2. If Christopher Columbus set out sail, and was
somehow able to keep traveling in a straight line, he would never come back home again. On the other
hand, if our world were a closed surface (such as ?), then traveling in a \straight line" might eventually
get us back home.

Is the same possible for the 3D universe we live in? Is it possible that traveling in a fast spaceship along
a \straight line" for a long time might get us back to our starting point? Can you think of any closed

3-manifolds?

Review:

De¯nition 1. For n ¸ 0, the n-sphere is de¯ned as: Sn = f~x 2 Rn+1 j d(~x;~0) = 1g.
Theorem 1. For n ¸ m, Sn cannot be embedded in Rm.

Q: What is the smallest m such that S2 can be embedded in Rm? 1

A \°atlander" (a 2-dimensional person living in \°atland", i.e., a 2-dimensional world) cannot really
visualize a 2-sphere, since a 2-sphere can be embedded in R3 but not in R2. Similarly, we, who live in a
world that locally looks like R3, cannot visualize a 3-sphere, even though we might very well be living
in one! But we can learn to work with it, as well as with many other things we cannot visualize, by
learning from °atlanders!

Example 1. One of several ways a °atlander can think of a 2-sphere is: two closed disks glued along
their boundaries. Similarly, we can think of a 3-sphere as two closed 3-balls (i.e., 3-dimensional balls in
R3) glued along their boundaries.

Q: Closed has two meanings: one for topological spaces, one for manifolds. Which one do we mean
when we say closed ball? 2

Q: Complete the following by de¯ning what » should be: S3 ' [B1(0; 0; 0)[B1(5; 0; 0)]= », where » is
de¯ned by: 3 We sometimes write this as B1(0; 0; 0)[@ B1(5; 0; 0). It means we're gluing the two balls
along their boundaries.

Example 2. Let's try to see why the above description of S3 is consistent with the formal de¯nition given
at the beginning. In other words, we'd like to ¯nd a homeomorphism between S3 = f~x 2 R4 j d(~x;~0) =
1g and B1(0; 0; 0) [@ B1(5; 0; 0).

Let's ¯rst do it in one dimension lower. Here's how a °atlander might describe a homeomorphism
between S2 = f~x 2 R3 j d(~x;~0) = 1g and B1(0; 0) [@ B1(5; 0):

(1) Send the North Pole (0; 0; 1) 2 S2 ½ R3 to the point (0; 0) 2 B1(0; 0). (2) Send the South Pole
(0; 0;¡1) 2 S2 ½ R3 to the point (5; 0) 2 B1(5; 0). (3) Send the Equator f(x; y; 0) 2 R3 j x2 +y2 = 1g ½
S2 ½ R3 to @(B1(0; 0) ) = @(B1(5; 0) ). (4) Send circles in the Northern Hemisphere parallel to the
Equator to circles in B1(0; 0) centered at (0; 0). (5) Send circles in the Southern Hemisphere parallel
to the Equator to circles in B1(5; 0) centered at (5; 0).

Q:What is the intersection of S2 with the horizontal plane of height 1=2 in R3? How about heights 0,
1, ¡1, 2? These are called horizontal cross sections of S2. 4

Q: How would you rigorously de¯ne a horizontal hyperplane in R4 (i.e., a horizontal R3 in R4)? 5

Q: Now try using horizontal cross sections of S3 to show it is homeomorphic to B1(0; 0; 0)[@B1(5; 0; 0).

13.
2We mean \topological"; i.e., a closed subset of R3.
3f(x; y; z) » (x+ 5; y; z)g.
4S1, S1, point, point, Á.
5f(x; y; z; w) 2 R4 j w is a constantg.
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De¯nition 2. Let X be a topological space. An embedded circle in X is called a simple closed curve
(scc). (Simple means not self-intersecting; closed means it's a loop { no endpoints.)

De¯nition 3. Let X be a topological space, with A ½ B ½ X. We say A bounds B i® A = @B. For
example, a scc C ½ X is said to bound a disk if there exists an embedded closed disk D ½ X such that
C = @D.

Example 3. For 3D beings like us, it is easy to see that every scc C in the 2-sphere bounds a disk on
both sides ; i.e., there exist two embedded closed disks D1;D2 ½ S2 with disjoint interiors such that
C = @D1 = @D2. (Although \easy to see", this is rather di±cult to prove rigorously. It's called the
Jordan Curve Theorem.)

For a °atlander, however, this is not quite as easy to see. Let C ½ B1(0; 0) be the circle of radius 1=4
around the point (1=2; 0). Shade-in each of the two disks that C bounds in B1(0; 0) [@ B1(5; 0).

Example 4. Now repeat the above example in one dimension higher: try to see why every embedded S2

in S3 bounds a closed 3-ball on each side.

Example 5. To work with S2 £ S1, it is often helpful to think of it as S2 £ I with S2 £ f0g glued to
S2 £ f1g.
Q: Is S2 £ S1 a manifold? If so, is it a closed manifold?

Q: Find a 2-sphere in S2 £ S1 that does not bound a ball on either side.

Q: Find a 2-sphere in S2 £ S1 that bounds a ball on one side only.

Q: Is there a 2-sphere in S2 £ S1 that bounds a ball on both sides?

Theorem 2. The only connected 3-manifold in which an embedded 2-sphere bounds a ball on both sides
is the 3-sphere.

Proof: (Idea) If an embedded 2-sphere bounds a ball on both sides, then the two balls share the same
boundary. But we already saw above that two balls glued along their boundaries yields an S3.

Theorem 3. S3 6' S2 £ S1.

Proof: Homework.

Example 6. Recall the de¯nition of the connected sum of two n-manifolds, M and N : remove an open
n-ball from each manifold; then M ¡ B1 and N ¡ B2 will each have a \new boundary component"
homeomorphic to what? 6 Glue these boundaries together to obtain the connected sum of M and N .

Q: What is the connected sum of an arbitrary surface with a 2-sphere? Why?

Q: What is the connected sum of an arbitrary 3-mfd with a 3-sphere? Why?

Example 7. Yet another way of thinking of the 2-sphere and the 3-sphere:

Let Bn denote the closed unit ball in Rn. For example, B2 is the closed unit disk in R2.

Q: Is B2 ' B1 £B1? Is B3 ' B2 £B1?

Q: The boundary of B2£B1 can be viewed as a closed disk glued to a cylinder glued to another closed
disk. Do you see how?

Q: The boundary of B3 £ B1 can be viewed as a ? glued to a ? glued to another ?. This should give
us the 3-sphere. Why?

6Sn¡1.
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