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We have so far seen the classi¯cation of all closed surfaces. Before talking about orientability, we have
one more theorem: the classi¯cation of non-closed but compact surfaces.

Theorem 1. Every compact surface (with boundary) is homeomorphic to some closed surface minus a
¯nite set of open disks. In other words, every compact surface can be obtained by removing ¯nitely
many open disks from one of S2, nT 2, or nRP2.

Sketch of Proof: Let F be a compact surface. Then its boundary consists of a number m ¸ 0 of circles
(why?). Take m disjoint copies D1; ¢ ¢ ¢ ;Dm of the closed unit disk and glue each of them along its
boundary to one of the m circle boundaries of F . The new surface F 0 we obtain is a closed surface; so,
by the classi¯cation of closed surface, it is homeomorphic to S2, nT 2, or nRP2. So F equals S2, nT 2,
or nRP2 minus a ¯nite number of open disks.

Orientable vs. non-orientable surfaces

Example 1. Write the symbol b on a piece of paper. Can you make it look like c by using only rotations
and translations but no re°ections? (We are doing \rigid" isotopy, so to speak. This means we can
move our b on the piece of paper freely, but we may not change its shape by any stretching, bending,
etc.)

Now write the symbol b on a MÄobius band, and \push" it a full turn along the MÄobius band. You
must remember that this is a 2-manifold, so ideally it has no thickness; therefore, as you're pushing the
symbol along, you should stop as soon as it reaches the starting point, even if it may seem to be on the
\other side" of the MÄobius band.

If this makes you feel uncomfortable, think of it instead as follows: pretend the symbol b is inside the
paper, not on it, and it has the same thickness (ideally 0) as the paper itself, so that you can see it
equally well from \both sides." Now keep pushing it along, and stop as soon as it returns close to its
original copy.

The two copies look di®erent! You've succeeded in making b look like c, by using only translations and
rotations, but no re°ections. So, on the MÄobius band, b is isotopic to c.
Now do the same on a cylinder (S1 £ [0; 1]). Is b isotopic to c on a cylinder?

In mathematics, we express these ideas by saying that the MÄobius band is not orientable, while the
plane and the cylinder are orientable.

Q: Do you think S2 is orientable (i.e., b is not isotopic to c on S2)? How about a torus?

De¯nition 1. Let C = [¡1; 1] £ f0g [ f0g £ [¡1; 1] ½ R2. (C looks like a small cross.) Let M be a 2-
manifold. Given an embedding h : C !M , the mirror-image h0 of h is de¯ned by h0(x; y) = h(¡x; y).
We say M is non-orientable if there is an embedding h : C !M which is isotopic to its mirror-image.
Otherwise, we say M is orientable.

Example 2. Draw a copy of C on a Klein bottle. Label its four endpoints as (1; 0), (0; 1), (¡1; 0), and
(0;¡1). Now draw a mirror-image C 0 of C (next to the original C), by switching the labels (1; 0) and
(¡1; 0), but keeping the other two labels ¯xed. Are C and C 0 isotopic?

Note. In the above de¯nition, h and h0 have the same image, i.e., h(C) = h0(C). But they are di®erent
maps ; for example, h(1; 0) 6= h0(1; 0). When we talk about h and h0 being isotopic, we are concerned
not just with their images, but with the maps themselves. This will become precise when we see the
formal de¯nition of isotopy, in a future section.

Theorem 2. For all n ¸ 1, S2 and nT 2 are orientable, while nRP2 is non-orientable.
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Proof: Omitted.

Corollary 3. A closed surface is embeddable in R3 i® it is orientable.

Proof: Homework.

De¯nition 2. For each n ¸ 1, the surface nT 2 is said to have genus n. S2 is said to have genus 0.
(nRP2 is said to have genus n=2.)
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