Recall: How many connected 1-mfds are there? ¹ It turns out that there are a lot more connected 2-mfds; in fact, there are infinitely many of them. Nevertheless, we can *classify* them, which roughly means we can systematically list them all, without any repetitions. (We'll soon have a better idea of what this means.) We will first concentrate only on 2-manifolds that are closed and can be embedded in \mathbb{R}^3 ; next, those that are closed but cannot be embedded in \mathbb{R}^3 ; and finally non-closed 2-mfds, but only compact ones. Non-compact 2-manifolds are more difficult to describe, and we'll skip them.

Closed surfaces that are embeddable in \mathbb{R}^3

Example 1. What is the definition of a *closed* manifold? ² Which surfaces have we seen so far that are closed and can be embedded in \mathbb{R}^3 ? Think before reading the following theorem!

Theorem 1. Every closed 2-manifold that can be embedded in \mathbb{R}^3 is homeomorphic to S^2 or to an *n*-hole torus (= the connected sum of *n* tori) for some $n \ge 1$. Proof: Omitted

Definition 1. Let (X, d) be a metric space, and let $A \subset X$. Given $\epsilon > 0$, the ϵ -neighborhood of A in X is defined as the set of all points in X whose distance is less than ϵ from some point in A: $N_{\epsilon}(A) = \{x \in X \mid (\exists a \in A) d(x, a) < \epsilon\}.$

Example 2. Let $A = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x, y, z \le 1 \text{ and at least two of } x, y, z \text{ are in the set } \{0,1\} \}$. Draw a picture of A.

Let $F = \partial(\overline{N_{0.1}(A)})$ (the boundary of the closure of the 0.1-neighborhood of A). Draw a picture of F. According to the theorem above, F is homeomorphic to an *n*-hole torus for some n (since F is clearly not homeomorphic to S^2). You will find n in the homework assignment.

Closed surfaces that are *not* embeddable in \mathbb{R}^3

Example 3. Let $X = [0,1]^2 / \{(x,0) \sim (x,1), (0,y) \sim (1,y)\}$. Is X a 2-manifold? Is X embeddable in \mathbb{R}^3 ?

Let $M = [0,1]^2 / \{(0,y) \sim (1,1-y)\}$. Is M a 2-manifold? Can you embed M in \mathbb{R}^3 ? Let $K = [0,1]^2 / \{(x,0) \sim (x,1), (0,y) \sim (1,1-y)\}$. Is K a 2-manifold? Can you embed K in \mathbb{R}^3 ? Let $P = [0,1]^2 / \{(x,0) \sim (1-x,1), (0,y) \sim (1,1-y)\}$. Is P a 2-manifold? Can you embed P in \mathbb{R}^3 ?

Definition 2. $M = [0,1]^2/\{(0,y) \sim (1,1-y)\}$ is called the **Möbius band** (or Möbius strip). $K = [0,1]^2/\{(x,0) \sim (x,1), (0,y) \sim (1,1-y)\}$ is called the **Klein bottle**. $P = [0,1]^2/\{(x,0) \sim (1-x,1), (0,y) \sim (1,1-y)\}$ is called the **projective plane**, more commonly denoted by \mathbb{RP}^2 .

Remark. The projective plane is often also referred to as the *real projective plane*. This is because there are other types of projective planes as well, such as the *complex projective plane*, denoted by \mathbb{CP}^2 , which we will not be studying.

Theorem 2. $\mathbb{R}P^2$ cannot be embedded in \mathbb{R}^3 . Proof: Omitted.

¹Only four: S^1 , [a, b], [a, b), (a, b).

²Compact, with no boundary.

Theorem 3. (1) The boundary of a Möbius band is a circle: $\partial M \simeq S^1$. (2) Gluing a Möbius band and a closed disk along their circle-boundaries yields a projective plane: $M \cup_{\partial} \overline{D^2} \simeq \mathbb{R}P^2$. (3) Gluing two Möbius bands along their circle-boundaries yields a Klein bottle: $M \cup_{\partial} M \simeq K$.

Proof. (Sketch)

(1) By definition, $M = [0,1]^2/\{(0,y) \sim (1,1-y)\}$. Therefore, ∂M consists of those points in $\partial([0,1]^2)$ that are *not* identified with any other point—except that the four corners of the square *are*, after being pairwise identified, in ∂M . So $\partial M = ([0,1] \times \{0\} \cup [0,1] \times \{1\})/\{(0,0) \sim (0,1), (1,0) \sim (1,1)\}$, which is homeomorphic to a circle.

(2) It's enough to show $M \simeq \mathbb{R}P^2 - D^2$, as in the following diagrams.

(3) Homework.

Theorem 4. Every closed 2-manifold that cannot be embedded in \mathbb{R}^3 is homeomorphic to the connected sum of n projective planes for some $n \geq 1$. Proof: Omitted.

Definition 3. For $n \ge 1$, the *n*-hole torus is the connected sum of *n* tori, denoted by nT^2 . Similarly, the connected sum of *n* projective planes is denoted by $n\mathbb{RP}^2$.

Corollary 5. Every closed 2-manifold is homeomorphic to either S^2 or nT^2 or $n\mathbb{R}P^2$, for some $n \ge 1$.

Example 4. According to the above corollary, $T^2 \# \mathbb{RP}^2$ is homeomorphic to either S^2 or nT^2 or $n\mathbb{RP}^2$, for some n. Which is it?

Theorem 6. $T^2 \# \mathbb{R}P^2 \simeq 3\mathbb{R}P^2$. Proof: Homework. Corollary 7. $T^2 \# \mathbb{R}P^2 \simeq K \# \mathbb{R}P^2$. Proof: Homework.

The above corollary may seem to suggest that $T^2 \simeq K$, which is not true!

Theorem 8. A torus is not homeomorphic to a Klein bottle. Proof: Omitted.

Theorem 9. $S^2 \not\simeq \mathbb{R}P^2$. Proof: Homework.

You will need the following definition for the homework assignment.

Definition 4. Let A be a subset of a connected topological space X. To say A separates X means X - A is not connected.

Example 5. Does S^1 separate \mathbb{R}^2 ? Yes. Does $[0,\infty)$ separate \mathbb{R}^2 ? No. Is there a non-separating embedded circle on the torus? Yes. How about a separating one? Yes.