Review defs of neighborhood, locally homeomorphic, and manifold.

Recall that, in the definition of manifold, we can replace "locally homeomorphic to an open ball in \mathbb{R}^{n} " with "locally homeomorphic to \mathbb{R}^{n} ."

Example 1. Is the open rectangle $(0,1) \times (0,2) \subset \mathbb{R}^2$ a manifold? Yes. Of what dimension? 2. Is the closed rectangle $[0,1] \times [0,2] \subset \mathbb{R}^2$ a manifold? No. Why?

We'd like to say that the closed rectangle is a manifold *with boundary*. Before defining this, we need another definition.

Definition 1. The *n*-dimensional upper half-space is defined as

$$\mathbb{R}^n_+ = \{ (x_1, \cdots, x_n) \in \mathbb{R}^n \mid x_n \ge 0 \}$$

When n = 2, \mathbb{R}^2_+ is also called the **upper half-plane**.

Example 2. Draw a picture of what each of \mathbb{R}^1_+ and \mathbb{R}^2_+ looks like.

Example 3. Let $X = B_1(0,0) \cap \mathbb{R}^2_+$. Is X homeomorphic to \mathbb{R}^2_+ ? Yes. Why? Does every point in X have a nbhd that's homeomorphic to either \mathbb{R}^2 or \mathbb{R}^2_+ ? Yes. Why?

Definition 2. (Overrides previous definition of manifold) A topological space X is called an *n*-dimensional manifold (*n*-mfd for short) if it is Hausdorff, Second Countable, and every point $x \in X$ has a neighborhood that is homeomorphic to \mathbb{R}^n or \mathbb{R}^n_+ . A point that has a neighborhood homeomorphic to \mathbb{R}^n_+ but not to \mathbb{R}^n is called a **boundary point**. The set of all such points (if any) is called the **boundary** of X, denoted by ∂X . If $\partial X \neq \phi$, then, for emphasis, X is sometimes called a **manifold with boundary**.

Example 4. Let $X = ([0,1] \times [0,1])/\{(0,y) \sim (1,y)\}$. Draw a picture of X. Is X a manifold? Yes. Is it a manifold with boundary? Yes. What is ∂X ? It's the disjoint union of two circles: $([0,1] \times \{0\}/\{(0,0) \sim (1,0))\} \cup ([0,1] \times \{1\}/\{(0,1) \sim (1,1))\}$.

Example 5. Let $X = [0,1] \times [0,1]/\{(0,y) \sim (1/2,y)\}$. Draw a picture of X. Is X a manifold? No. Why?

Remark. Depending on the context, the term boundary can mean two similar but *different* things: when applied to a subset A of a topological space, it means $\overline{A} - A^{\circ}$; but when applied to a manifold, it is defined according to the above definition.

Theorem 1. (Classification of 1-manifolds) Every 1-manifold is homeomorphic to [0, 1] or (0, 1) or [0, 1) or S^1 .

Idea of Proof: What things can you create by joining or overlapping line segments end-to-end? Only these!

We are often interested in studying manifolds that are compact and have no boundary. (Why? One reason is that non-compact manifolds are usually more difficult to study, or at least different from compact ones.) There is a name for these manifolds:

Definition 3. A manifold is said to be **closed** if it is compact and has no boundary.

Note. Do not confuse the two different meanings of *closed*; they depend on the context: A subset A of a topological space X is closed if X - A is open in X (i.e., is in \mathcal{T}). A manifold is closed if it's compact and has no boundary.

Example 6. Which of the four 1-mfds are closed? Ans: Only S^1 . Why is each of the other three not closed?

Hausdorff Spaces

Definition: A topological space X is said to be **Hausdorff** iff every pair of distinct points $x_1, x_2 \in X$ can be **separated** by open sets, i.e., there exist disjoint open sets $U_1, U_2 \subset X$ such that $x_i \in U_i$.

Example 7. Q: Is \mathbb{R}^2 with the Euclidean metric Hausdorff? Yes. Why?

Q: Is \mathbb{R}^2 with the discrete topology Hausdorff? Yes. Why?

Q: Is \mathbb{R}^2 with the indiscrete topology Hausdorff? No. Why?

Example 8. Which of the following are manifolds? Why?

(a) $([0,2] \cup [5,7])/\{\forall x \in [0,1], x \sim (x+5)\}$. Ans: Not a mfd, since the point $\{1,6\}$ in the quotient space does not have a nbhd that's homeomorphic to \mathbb{R}^n or \mathbb{R}^n_+ for any n.

(b) $([0,2] \cup [5,7])/\{\forall x \in [0,1), x \sim (x+5)\}$. Ans: Every point does have a nbhd that's homeomorphic to \mathbb{R} ; nevertheless, this is not a mfd! Why? Because it's not Hausdorff: The points 1 and 6 cannot be separated by open sets.