Definition 1. A metric space M is a set X and a function $d: X \times X \to [0, \infty)$ such that $\forall x, y, z \in X$ 1. d(x, y) = 0 iff x = y; 2. d(x, y) = d(x, y) (d is summetric):

2. d(x,y) = d(y,x) (d is symmetric);

3. $d(x,z) \leq d(x,y) + d(y,z)$ (triangle inequality).

Example 1. \mathbb{R} with the **Euclidean metric** (the "standard" metric): $X = \mathbb{R}$, d(x, y) = |x - y|. Why is this a metric space? Example 2. \mathbb{R} with the **discrete metric**, denoted \mathbb{R}_d : $X = \mathbb{R}$, $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$. Why is this a metric space? Example 3. \mathbb{R}^n with the **Euclidean metric**: $X = \mathbb{R} \times \cdots \times \mathbb{R}$ (n times), for $x = (x_1, \cdots, x_n)$, $y = (y_1, \cdots, y_n)$, $d(x, y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}$. Why is this a metric space? Example 4. \mathbb{R}^2 with the **taxicab metric**:

 $X = \mathbb{R}^2$, for $a = (a_1, a_2), b = (b_1, b_2), d(a, b) = |a_1 - b_1| + |a_2 - b_2|$. Why is this a metric space?

Note. 1. Unless stated otherwise, whenever we refer to \mathbb{R} as a metric space, we mean " \mathbb{R} with the Euclidean metric."

2. For a metric space M = (X, d), X is called **the underlying set**. We will often abuse notation and write M instead of X, or vice versa; for example, we may write $x \in M$ instead of $x \in X$; or we may refer to X as a metric space, when it's really M = (X, d) that's a metric space.

Definition 2. Given a metric space M, a point $x \in M$, and a real number $r \ge 0$, the **ball** of radius r around x is defined as

$$B_r(x) = \{ y \in M \mid d(x, y) < r \}$$

Example 5. In \mathbb{R} with the Euclidean metric, $B_2(1) = ?$ Ans: The open interval from -1 to 3: (-1,3).

Example 6. In \mathbb{R}^2 with the Euclidean metric, what does $B_2(1,2)$ look like? (Strictly speaking, we should write $B_2((1,2))$; but too many parentheses can make in difficult to read, so we slightly abuse notation and write only one set of parenthesis.) How about $B_2(1,2) \subset \mathbb{R}^3$, what does it look like?

Example 7. In \mathbb{R}_d , what is $B_3(8)$? What is $B_{0.5}(8)$? Ans: $B_3(8) = \mathbb{R}$; $B_{0.5}(8) = \{8\}$

Example 8. In \mathbb{R}^2 with the taxicab metric, what does $B_1(0,0)$ look like?

Example 9. Is there a metric on \mathbb{R}^2 for which $B_1(0,0) = (-1,1) \times (-1,1)$? Ans: $d(a,b) = \max\{|a_1 - b_1|, |a_2 - b_2|\}$.

Definition 3. A subset A of a metric space M is said to be **open** iff $\forall x \in A, \exists r > 0$ such that $B_r(x) \subset A$.

Example 10. The interval (-1,1] is not open in \mathbb{R} . Why? Because there is no positive r for which $B_r(1) \subset (-1,1]$.

Example 11. The interval (-1, 1) is an open subset of \mathbb{R} . Why?

Proof: Given an arbitrary $x \in (-1,1)$, let $r = \min\{d(x,1), d(x,-1)\}$. Then $B_r(x) \subset (-1,1)$, because: Let $y \in B_r(x)$; we'll show $y \in (-1,1)$. By definition of $B_r(x)$, d(x,y) < r; so $d(x,y) < \min\{d(x,1), d(x,-1)\}$; so d(x,y) < d(x,1) and d(x,y) < d(x,-1). We want to show d(0,y) < 1. By triangle inequality, $d(0,y) \le d(0,x) + d(x,y)$. So, d(0,y) < d(0,x) + d(x,1) and d(0,y) < d(0,x) + d(x,-1). If $x \ge 0$, then the right hand side of the first inequality equals 1. If x < 0, then the left hand side of the second inequality equals 1. So either way, d(0,y) < 1, as desired. We showed that for every $x \in (-1,1)$, there is a positive r such that $B_r(x) \subset (-1,1)$. So by the definition of open, (-1,1) is an open subset of \mathbb{R} . Definition 4. A subset A of a metric space M is said to be **closed** iff its complement $A^c = M - A$ is open.

Example 13. $(-\infty, -1] \cup [1, \infty)$ is closed in \mathbb{R} . Why?

Example 14. Is $(-\infty, -1]$ closed in \mathbb{R} ? Yes. Why?

Example 15. Is [-1, 1] closed in \mathbb{R} ? Yes. Why?

Example 16. [-1,1) is neither open nor closed in \mathbb{R} . Why?

Example 17. \mathbb{R} is open in \mathbb{R} . ϕ is open in \mathbb{R} . Why?

Example 18. \mathbb{R} is closed in \mathbb{R} . ϕ is closed in \mathbb{R} . Why?

Example 19. Is \mathbb{R} open or closed or neither in \mathbb{R}^2 ? Ans: closed. Why?

Example 20. Find an open set in \mathbb{R}_d . Find a closed set in \mathbb{R}_d . Ans: Each of \mathbb{R}_d and ϕ is both open and closed.

(Quote from Munkres's book, *Topology*: Q: "What's the difference between a door and a set?" A: "A door is always either open or closed.")

Note. For emphasis, $B_r(x)$ is sometimes called the *open* ball of radius r around x. In contrast, we have: Definition 5. The closed ball of radius r around x is defined as

$$\overline{B_r(x)} = \{ y \in M \mid d(x, y) \le r \}$$

Example 21. Draw the open and closed balls of radius 5 around the point 2 in \mathbb{R} . Draw the open and closed balls of radius 5 around the point (2, 5) in \mathbb{R}^2 .

Definition 6. Let A be a subset of a metric space M. A point $x \in M$ is said to be a **limit point** of A iff every ball around x contains a point of A other than x.

(Synonyms: cluster point; accumulation point.)

Example 22. Let $M = \mathbb{R}$, A = [0, 2). Which of the points x = 1, 2, 3 are limit points of A? Why? Ans: only 1 and 2. What if $A = [0, 1] \cup \{2\}$? Ans: only 1.

Equivalent definition of limit point: x is a limit point of A iff $\forall \epsilon > 0, \exists y \in A - \{x\}$ such that $d(x, y) < \epsilon$.

Theorem 1. A subset A of a metric space M is closed iff it contains all its limit points.

Proof. " \Rightarrow ": Suppose A is closed. Then, by definition, A^c is open. Let x be a limit point of A. We want to show $x \in A$. By definition of limit point, every open ball around x intersects $A - \{x\}$; therefore no open ball around x is entirely contained in A^c . This implies $x \notin A^c$, since if $x \in A^c$, then there would be an open ball around x contained entirely in A^c (since A^c is open). Finally, since $x \notin A^c$, x must be in A, as desired.

" \Leftarrow " : (Do yourself!)

Definition 7. Given a subset A of a metric space M, its **interior** A° is defined as the set of all points $x \in A$ such that some open ball around x is a subset of A.

Example 23. (a) What is the interior of $[2,5) \subset \mathbb{R}$? Ans: (2,5).

(b) What is the interior of $(2,5) \subset \mathbb{R}$? Ans: (2,5).

(c) What is the interior of the closed ball of radius 2 around the origin in \mathbb{R}^2 ? Ans: the open ball of radius 2 around the origin.

Definition 8. Given a subset A of a metric space M, its closure \overline{A} is defined as A union the set of all limit points of A. The **boundary** of A is defined as $\partial A = \overline{A} - A^{\circ}$.

Example 24. (a) What are the closure and boundary of $[2,5) \subset \mathbb{R}$? Ans: closure = [2,5]; boundary = $\{2,5\}$.

(b) What is the closure and boundary of the closed ball of radius 2 around the origin in \mathbb{R}^2 ? Ans: closure = itself; boundary = circle of radius 2 around the origin.

Continuity

For a function f to be continuous roughly means if two point x and y are close, then f(x) and f(y) are close; i.e., if d(x, y) is small, then d(f(x), f(y)) is small.

Definition 9. Let M_1 , M_2 be metric spaces, with d_1 and d_2 as their corresponding distance functions. A function $f: M_1 \to M_2$ is said to be **continuous at** $a \in M_1$ iff $\forall \epsilon > 0$, $\exists \delta > 0$ such that $d_1(a, x) < \delta$ implies $d_2(f(a), f(x)) < \epsilon$. We say f is **continuous** if it is continuous at every point in M_1 .

Example 25. Prove that $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x is continuous.

Proof: Fix an arbitrary point $p \in \mathbb{R}$. We will show f is continuous at p, by showing that $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall q \in B_{\delta}(p), f(q) \in B_{\epsilon}(f(p))$.

Pick any $\epsilon > 0$. Let $\delta = \epsilon/2$. Then, for any $q \in B_{\delta}(p)$ we have: $d(f(p), f(q)) = |2p - 2q| = 2|p - q| < 2\delta = \epsilon$. So $f(q) \in B_{\epsilon}(f(p))$, as desired. Since p was arbitrary, f is continuous at every point in \mathbb{R} .

Example 26. Determine whether each of the following functions f and g from \mathbb{R} to \mathbb{R} is continuous at 0. (Support your answers informally, without rigorous proof.)

 $f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases} \qquad g(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$