
Math 460 Topology Spring 2001

De¯nitions

De¯nition 1. A metric space M is a set X and a func-
tion d : X £ X ! [0;1) such that 8x; y; z 2 X 1.
d(x; y) = 0 i® x = y; 2. d(x; y) = d(y; x) (d is symmet-
ric); 3. d(x; z) · d(x; y) + d(y; z) (triangle inequality).

De¯nition 2. Given a metric space M , a point x 2 M ,
and a real number r ¸ 0, the ball of radius r around x
is de¯ned as Br(x) = fy 2M j d(x; y) < rg
De¯nition 3. A subset A of a metric space M is said to
be open i® 8x 2 A, 9r > 0 such that Br(x) ½ A.

De¯nition 4. A subset A of a metric space M is said to
be closed i® its complement Ac = M ¡A is open.

De¯nition 5. The closed ball of radius r around x is
de¯ned as Br(x) = fy 2M j d(x; y) · rg
De¯nition 6. Let A be a subset of a metric space M . A
point x 2 M is said to be a limit point of A i® every
ball around x contains a point of A other than x.

De¯nition 7. Given a subset A of a metric space M , its
interior A± is de¯ned as the set of all points x 2 A
such that some open ball around x is a subset of A.

De¯nition 8. Given a subset A of a metric space M , its
closureA is de¯ned as A union the set of all limit points
of A. The boundary of A is de¯ned as @A = A¡A± .

De¯nition 9. Let M1, M2 be metric spaces, with d1

and d2 as their corresponding distance functions. A
function f : M1 ! M2 is said to be continuous at
a 2 M1 i® 8² > 0, 9± > 0 such that d1(a; x) < ± im-
plies d2(f(a); f(x)) < ². We say f is continuous if it
is continuous at every point in M1 .

De¯nition 10. A topology on a set X is a collection T
of subsets of X satisfying: 1. Á and X are in T . 2. The
union of any collection of sets in T is in T . 3. The
intersection of any ¯nite collection of sets in T is in T .
The last two conditions are often stated as: T is closed
under unions and ¯nite intersections. The pair (X; T )
is called a topological space. The elements of T are
called open sets. A subset A ½ X is closed i® its
complement in X is open.

De¯nition 11. Let (X; d) be a metric space. Let T be
the collection of all subsets of X that are open according
to the metric d. Then T is said to be the topology on
X induced by the metric d.

De¯nition 12. For any set X, the discrete topology
on X is de¯ned as T = P(X), i.e., all subsets of X are
declared to be open.

De¯nition 13. For any set X, the indiscrete topology
on X is de¯ned as T = fÁ;Xg .

De¯nition 14. Let X and Y be two topological spaces.
We say a function f : X ! Y is continuous i® for
every open set U ½ Y , its preimage f¡1(U) ½ X is
open in X .

De¯nition 15. Let A be a subset of a set X . Given a
topology T on X, we de¯ne the subspace topology

(also called the relative topology) on A by TA = fU \
A j U 2 T g. (A; TA) is said to be a subspace of (X; T ).
TA is said to be induced by T .

De¯nition 16. Two topological spaces X and Y are
homeomorphic (or topologically equivalent) i® 9f :
X ! Y such that 1. f is 1-1 and onto; 2. f and f¡1 are
both continuous. When two spaces X and Y are home-
omorphic, we write X ' Y . The function f is called a
homeomorphism from X to Y .

De¯nition 17. A topological space X is connected i®
it is not equal to the union of two disjoint nonempty
open subsets.

De¯nition 18. Let X be a set, and A ½ X. A collection
F of subsets of X is called a cover of A i® A ½ SB2F B.
\Cover" is both a noun and a verb: F is a cover of A;
F covers A.

De¯nition 19. Let X be a set, and A ½ X . Let F be
a cover of A. A subcover of F is a set F 0 ½ F that
covers A.

De¯nition 20. Let X be a topological space, and F a
cover of A ½ X. F is said to be an open cover of A if
every element of F is open in X.

De¯nition 21. A topological space X is compact i® ev-
ery open cover of X has a ¯nite subcover.

De¯nition 22. Let (X; TX) and (Y; TY ) be two topolog-
ical spaces. Their product is de¯ned by: A set U
is open in X £ Y i® it is a (¯nite or in¯nite) union
of sets of the form A £ B, where A is open in X
and B is open in Y . We write: (X £ Y; T ), where
T = fSA® £B® j A® 2 TX ; B® 2 TY g.
De¯nition 23. Let X be a set, » an equivalence relation
on X, and Q the set of all equivalence classes of », i.e,
Q = f[x] j x 2 Xg. De¯ne a map q : X ! Q by:
For each x 2 X , q(x) = [x]. The map q is called the
quotient map (or the identi¯cation map) from X to
Q. We sometimes write X= » instead of Q.

De¯nition 24. Let (X; TX) be a topological space, » an
equivalence relation on X, and q : X ! Q the corre-
sponding quotient map. The quotient topology on Q
is de¯ned as TQ = fU ½ Q j q¡1(U) 2 TXg. In other
words, U is declared to be open in Q i® its preimage
q¡1(U) is open in X. The pair (Q; TQ) is called the
quotient space (or the identi¯cation space) obtained
from (X; TX) and the equivalence relation ».

De¯nition 25. Given a point x in a topological space
X, a neighborhood of x is any open set that contains
x.

De¯nition 26. A topological space X is said to be lo-
cally homeomorphic to a topological space Y i® every
point in X has some neighborhood that is homeomor-
phic to Y .

De¯nition 27. The n-dimensional upper half-space
is de¯ned as Rn+ = f(x1; ¢ ¢ ¢ ; xn) 2 Rn j xn ¸ 0g When
n = 2, R2

+ is also called the upper half-plane.
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De¯nition 28. A topological space X is called an n-
dimensional manifold (n-mfd for short) if it is Haus-
dor®, Second Countable, and every point x 2 X has a
neighborhood that is homeomorphic to Rn or Rn+. A
point that has a neighborhood homeomorphic to Rn+
but not to Rn is called a boundary point. The set of
all such points (if any) is called the boundary of X,
denoted by @X. If @X 6= Á, then, for emphasis, X is
sometimes called a manifold with boundary.

De¯nition 29. A topological space X is said to be
Hausdor® i® every two points inX have disjoint neigh-
borhoods.

De¯nition 30. A manifold is said to be closed if it is
compact and has no boundary.

De¯nition 31. Let X and Y be topological spaces. An
embedding of X into Y is a map f : X ! Y such that
f is a homeomorphism from X onto its image f(X),
where f(X) is given the subspace topology as a subset
of Y .

De¯nition 32. Let M and N be connected n-manifolds.
Let x 2 M , y 2 N . Let Bx and By be neighborhoods
of x and y, respectively, such that they are homeomor-
phic to open balls in Rn, and their boundaries @Bx and
@By are homeomorphic to Sn¡1. The quotient space ob-
tained by gluing M ¡Bx to N ¡By along their sphere
boundaries is called the connected sum of M and N ,
and is denoted by M#N .

De¯nition 33. Let (X; d) be a metric space, and let A ½
X. Given ² > 0, the ²-neighborhood of A in X is
de¯ned as the set of all points in X whose distance
is less than ² from some point in A: N²(A) = fx 2
X j (9a 2 A)d(x; a) < ²g.
De¯nition 34. M = [0; 1]2=f(0; y) » (1; 1 ¡ y)g is
called the MÄobius band (or MÄobius strip). K =
[0; 1]2=f(x; 0) » (x; 1) ; (0; y) » (1; 1¡ y)g is called the
Klein bottle. P = [0; 1]2=f(x; 0) » (1¡x; 1) ; (0; y) »
(1; 1 ¡ y)g is called the projective plane, more com-
monly denoted by RP2.

De¯nition 35. For n ¸ 1, the n-hole torus is the con-
nected sum of n tori, denoted by nT 2. Similarly, the
connected sum of n projective planes is denoted by
nRP2.

De¯nition 36. Let A be a subset of a connected topo-
logical space X. To say A separates X means X ¡ A
is not connected.

De¯nition 37. Let C = [¡1; 1]£f0g[f0g£[¡1; 1] ½ R2.
(C looks like a small cross.) Let M be a 2-manifold.
Given an embedding h : C ! M , the mirror-image
h0 of h is de¯ned by h0(x; y) = h(¡x; y). We say M is
non-orientable if there is an embedding h : C ! M
which is isotopic to its mirror-image. Otherwise, we say
M is orientable.

De¯nition 38. For each n ¸ 1, the surface nT 2 is said
to have genus n. S2 is said to have genus 0. (nRP2 is
said to have genus n=2.)

De¯nition 39. Let X and Y be topological spaces. We
say an embedding f : X ! Y is isotopic to another
embedding g : X ! Y , denoted f ¼ g, i® there exists
a continuous map H : X £ I ! Y such that 8x 2 X
1. H(x; 0) = f(x). 2. H(x; 1) = g(x). 3. 8t 2 I, H(¢; t)
is an embedding of X into Y . We say H is an isotopy
from f to g.

De¯nition 40. Given a ¯xed t 2 I, the map H(¢; t) :
X ! Y is de¯ned by: 8x 2 X , x7! H(x; t).
(Read the symbol \7!" as \maps to", or \is sent to".)
Instead of H(¢; t) : X ! Y we often write Ht : X ! Y .
They are equivalent.

De¯nition 41. An embedded circle in R3 is called a
knot. A set of (one or more) disjoint embedded cir-
cles in R3 is called a link.

De¯nition 42. Let X be a topological space. A path
(or a curve) in X is a continuous map p : I ! X.
A path whose initial point p(0) equals its terminal
point p(1) is called a loop (or a closed curve).

De¯nition 43. Let X and Y be topological spaces, and
f and g continuous maps from X to Y . A homotopy
from f to g is a continuous map H : X £ I ! Y such
that 1. H0 = f . 2. H1 = g. We say f is homotopic
to g, and write f » g. (Note that the only di®erence
between a homotopy and an isotopy is the \third con-
dition": an isotopy is a homotopy in which every Ht is
an embedding.)
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Theorems

Theorem 1. A subset A of a metric space M is closed
i® it contains all its limit points.

Theorem 2. Given metric spaces M and N , a function
f : M ! N is continuous i® the preimage (or inverse
image) of every open set is open; i.e., for every open set
U ½ N , f¡1(U) is an open subset of M .

Theorem 3. Every metric space is a topological space.
More precisely, given a metric (i.e., a distance function)
d on a set X , let T be the collection of subsets of X
that are open according to d. Then T satis¯es the de¯-
nition of being a topology. T is said to be the topology
induced by the metric d.

Theorem 4. Let (X;T ) be a topological space, and let
A ½ X. Then the subspace topology on A is a topology.

Theorem 5. Let f : X ! Y be a continuous map be-
tween two topological spaces. Then for every subspace
A ½ X, the restriction of f to A, i.e., f jA : A ! Y , is
continuous.

Theorem 6. If A ' B, then A is connected i® B is con-
nected.

Theorem 7. R is connected.

Theorem 8. A ½ R is connected i® A is an interval
(open, closed, or half open).

Theorem 9. The continuous image of a connected set
is connected; i.e, if f : X ! Y is a continuous map
between topological spaces, and if X is connected, then
f(X) is connected.

Theorem 10. If A ' B, then A is connected i® B is
connected.

Theorem 11. A topological space X is connected i® it
contains no proper subset which is both open and closed
in X.

Theorem 12. If A and B are connected subspaces of a
topological space X, and if A \ B 6= Á, then A [ B is
connected.

Theorem 13. 1. R is not compact. 2. (Heine-Borel) Ev-
ery closed interval [a; b] ½ R is compact.

Theorem 14. The continuous image of a compact set is
compact; i.e., if f : X ! Y is a continuous map between
two topological spaces, and if X is compact, then f(X)
is compact.

Theorem 15. (Classi¯cation of 1-manifolds) Every 1-
manifold is homeomorphic to [0; 1] or (0; 1) or [0; 1) or
S1.

Theorem 16. For m · n, Sn cannot be embedded in
Rm.

Theorem 17. Every closed 2-manifold that can be em-
bedded in R3 is homeomorphic to S2 or to an n-hole
torus (= the connected sum of n tori) for some n ¸ 1.

Corollary 18. Every closed 2-manifold is homeomorphic
to either S2 or nT 2 or nRP2, for some n ¸ 1.

Theorem 19. RP2 cannot be embedded in R3.

Theorem 20. (1) The boundary of a MÄobius band is a
circle: @M ' S1. (2) Gluing a MÄobius band and a
closed disk along their circle-boundaries yields a pro-
jective plane: M [@ D2 ' RP2. (3) Gluing two MÄobius
bands along their circle-boundaries yields a Klein bot-
tle: M [@ M ' K.

Theorem 21. Every closed 2-manifold that cannot be
embedded in R3 is homeomorphic to the connected sum
of n projective planes for some n ¸ 1.

Theorem 22. T 2#RP2 ' 3RP2.

Theorem 23. A torus is not homeomorphic to a Klein
bottle.

Theorem 24. S2 6' RP2.

Theorem 25. Every compact surface (with boundary) is
homeomorphic to some closed surface minus a ¯nite set
of open disks. In other words, every compact surface
can be obtained by removing ¯nitely many open disks
from one of S2, nT 2, or nRP2.

Theorem 26. For all n ¸ 1, S2 and nT 2 are orientable,
while nRP2 is non-orientable.

Theorem 27. ¼ is an equivalence relation.

HW Defs & Thms

Restriction of Continuous Maps Lemma: Let f : X !
Y be a continuous map between two topological spaces.
Then for every subspace A ½ X , the restriction of f to
A, i.e., f jA : A! Y , is continuous.

De¯nition 44. A subset A of a metric space X is
bounded i® for some positive real number r and for
some point x 2 X , A ½ Br(x).

De¯nition 45. We say a function f : X ! Y , where X
and Y are metric spaces, is bounded i® its image f(X)
is a bounded subset of Y .

Jordan Curve Theorem: Every embedded circle C ½ R2

separates R2.

De¯nition 46. Let X be a topological space. A loop
whose image is just one point in X is called a trivial
loop. A loop is said to be null-homotopic i® it is
homotopic to a trivial loop in X.

Theorem 28. (Brouwer Fixed Point Theorem, Dimen-
sion 1) Let f : I ! I be a continuous map. Then f has
a ¯xed point.

Theorem 29. (Borsuk-Ulam Theorem, Dimension 2)
Let f : S2 ! R2 be continuous. Then there exist an-
tipodal points p;¡p 2 S2 such that f(p) = f(¡p).
Theorem 30. (Brouwer Fixed Point Theorem, Dimen-
sion n) Every continuous map f : Bn ! Bn has a ¯xed
point.
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