Definitions

Definition 1. A metric space M is a set X and a function $d : X \times X \to [0, \infty)$ such that $\forall x, y, z \in X$ 1. d(x, y) = 0 iff x = y; 2. d(x, y) = d(y, x) (d is symmetric); 3. $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality).

Definition 2. Given a metric space M, a point $x \in M$, and a real number $r \ge 0$, the **ball** of radius r around xis defined as $B_r(x) = \{y \in M \mid d(x, y) < r\}$

Definition 3. A subset A of a metric space M is said to be **open** iff $\forall x \in A, \exists r > 0$ such that $B_r(x) \subset A$.

Definition 4. A subset A of a metric space M is said to be **closed** iff its complement $A^c = M - A$ is open.

Definition 5. The closed ball of radius r around x is defined as $\overline{B_r(x)} = \{y \in M \mid d(x, y) \le r\}$

Definition 6. Let A be a subset of a metric space M. A point $x \in M$ is said to be a **limit point** of A iff every ball around x contains a point of A other than x.

Definition 7. Given a subset A of a metric space M, its interior A° is defined as the set of all points $x \in A$ such that some open ball around x is a subset of A.

Definition 8. Given a subset A of a metric space M, its closure \overline{A} is defined as A union the set of all limit points of A. The **boundary** of A is defined as $\partial A = \overline{A} - A^{\circ}$.

Definition 9. Let M_1 , M_2 be metric spaces, with d_1 and d_2 as their corresponding distance functions. A function $f: M_1 \to M_2$ is said to be **continuous at** $a \in M_1$ iff $\forall \epsilon > 0, \exists \delta > 0$ such that $d_1(a, x) < \delta$ implies $d_2(f(a), f(x)) < \epsilon$. We say f is **continuous** if it is continuous at every point in M_1 .

Definition 10. A **topology** on a set X is a collection \mathcal{T} of subsets of X satisfying: 1. ϕ and X are in \mathcal{T} . 2. The union of any collection of sets in \mathcal{T} is in \mathcal{T} . 3. The intersection of any finite collection of sets in \mathcal{T} is in \mathcal{T} . The last two conditions are often stated as: \mathcal{T} is **closed under** unions and finite intersections. The pair (X, \mathcal{T}) is called a **topological space**. The elements of \mathcal{T} are called **open** sets. A subset $A \subset X$ is **closed** iff its complement in X is open.

Definition 11. Let (X, d) be a metric space. Let \mathcal{T} be the collection of all subsets of X that are open according to the metric d. Then \mathcal{T} is said to be the topology on X induced by the metric d.

Definition 12. For any set X, the **discrete topology** on X is defined as $\mathcal{T} = \mathcal{P}(X)$, i.e., all subsets of X are declared to be open.

Definition 13. For any set X, the **indiscrete topology** on X is defined as $\mathcal{T} = \{\phi, X\}$.

Definition 14. Let X and Y be two topological spaces. We say a function $f : X \to Y$ is **continuous** iff for every open set $U \subset Y$, its preimage $f^{-1}(U) \subset X$ is open in X.

Definition 15. Let A be a subset of a set X. Given a topology \mathcal{T} on X, we define the subspace topology

(also called the *relative topology*) on A by $\mathcal{T}_A = \{U \cap A \mid U \in \mathcal{T}\}$. (A, \mathcal{T}_A) is said to be a **subspace** of (X, \mathcal{T}) . \mathcal{T}_A is said to be **induced** by \mathcal{T} .

Definition 16. Two topological spaces X and Y are **homeomorphic** (or topologically equivalent) iff $\exists f$: $X \to Y$ such that 1. f is 1-1 and onto; 2. f and f^{-1} are both continuous. When two spaces X and Y are homeomorphic, we write $X \simeq Y$. The function f is called a **homeomorphism** from X to Y.

Definition 17. A topological space X is connected iff it is *not* equal to the union of two disjoint nonempty open subsets.

Definition 18. Let X be a set, and $A \subset X$. A collection F of subsets of X is called a **cover** of A iff $A \subset \bigcup_{B \in F} B$. "Cover" is both a noun and a verb: F is a cover of A; F covers A.

Definition 19. Let X be a set, and $A \subset X$. Let F be a cover of A. A **subcover** of F is a set $F' \subset F$ that covers A.

Definition 20. Let X be a topological space, and F a cover of $A \subset X$. F is said to be an **open cover** of A if every element of F is open in X.

Definition 21. A topological space X is **compact** iff every open cover of X has a finite subcover.

Definition 22. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces. Their **product** is defined by: A set Uis open in $X \times Y$ iff it is a (finite or infinite) union of sets of the form $A \times B$, where A is open in Xand B is open in Y. We write: $(X \times Y, \mathcal{T})$, where $\mathcal{T} = \{\bigcup A_{\alpha} \times B_{\alpha} \mid A_{\alpha} \in \mathcal{T}_X, B_{\alpha} \in \mathcal{T}_Y\}.$

Definition 23. Let X be a set, ~ an equivalence relation on X, and Q the set of all equivalence classes of ~, i.e, $Q = \{[x] \mid x \in X\}$. Define a map $q : X \to Q$ by: For each $x \in X$, q(x) = [x]. The map q is called the **quotient map** (or the *identification map*) from X to Q. We sometimes write X/\sim instead of Q.

Definition 24. Let (X, \mathcal{T}_X) be a topological space, \sim an equivalence relation on X, and $q: X \to Q$ the corresponding quotient map. The **quotient topology** on Q is defined as $\mathcal{T}_Q = \{U \subset Q \mid q^{-1}(U) \in \mathcal{T}_X\}$. In other words, U is declared to be open in Q iff its preimage $q^{-1}(U)$ is open in X. The pair (Q, \mathcal{T}_Q) is called the **quotient space** (or the *identification space*) obtained from (X, \mathcal{T}_X) and the equivalence relation \sim .

Definition 25. Given a point x in a topological space X, a **neighborhood** of x is any open set that contains x.

Definition 26. A topological space X is said to be **locally homeomorphic** to a topological space Y iff every point in X has some neighborhood that is homeomorphic to Y.

Definition 27. The *n*-dimensional upper half-space is defined as $\mathbb{R}^n_+ = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \ge 0\}$ When $n = 2, \mathbb{R}^2_+$ is also called the **upper half-plane**. Definition 28. A topological space X is called an *n*dimensional manifold (*n*-mfd for short) if it is Hausdorff, Second Countable, and every point $x \in X$ has a neighborhood that is homeomorphic to \mathbb{R}^n or \mathbb{R}^n_+ . A point that has a neighborhood homeomorphic to \mathbb{R}^n_+ but not to \mathbb{R}^n is called a **boundary point**. The set of all such points (if any) is called the **boundary** of X, denoted by ∂X . If $\partial X \neq \phi$, then, for emphasis, X is sometimes called a **manifold with boundary**.

Definition 29. A topological space X is said to be **Hausdorff** iff every two points in X have disjoint neighborhoods.

Definition 30. A manifold is said to be **closed** if it is compact and has no boundary.

Definition 31. Let X and Y be topological spaces. An **embedding** of X into Y is a map $f: X \to Y$ such that f is a homeomorphism from X onto its image f(X), where f(X) is given the subspace topology as a subset of Y.

Definition 32. Let M and N be connected n-manifolds. Let $x \in M$, $y \in N$. Let B_x and B_y be neighborhoods of x and y, respectively, such that they are homeomorphic to open balls in \mathbb{R}^n , and their boundaries ∂B_x and ∂B_y are homeomorphic to S^{n-1} . The quotient space obtained by gluing $M - B_x$ to $N - B_y$ along their sphere boundaries is called the **connected sum** of M and N, and is denoted by M # N.

Definition 33. Let (X, d) be a metric space, and let $A \subset X$. Given $\epsilon > 0$, the ϵ -neighborhood of A in X is defined as the set of all points in X whose distance is less than ϵ from some point in A: $N_{\epsilon}(A) = \{x \in X \mid (\exists a \in A)d(x, a) < \epsilon\}.$

Definition 34. $M = [0,1]^2/\{(0,y) \sim (1,1-y)\}$ is called the **Möbius band** (or Möbius strip). $K = [0,1]^2/\{(x,0) \sim (x,1), (0,y) \sim (1,1-y)\}$ is called the **Klein bottle**. $P = [0,1]^2/\{(x,0) \sim (1-x,1), (0,y) \sim (1,1-y)\}$ is called the **projective plane**, more commonly denoted by \mathbb{RP}^2 .

Definition 35. For $n \ge 1$, the *n*-hole torus is the connected sum of *n* tori, denoted by nT^2 . Similarly, the connected sum of *n* projective planes is denoted by $n\mathbb{R}P^2$.

Definition 36. Let A be a subset of a connected topological space X. To say A separates X means X - A is not connected.

Definition 37. Let $C = [-1, 1] \times \{0\} \cup \{0\} \times [-1, 1] \subset \mathbb{R}^2$. (C looks like a small cross.) Let M be a 2-manifold. Given an embedding $h : C \to M$, the **mirror-image** h' of h is defined by h'(x, y) = h(-x, y). We say M is **non-orientable** if there is an embedding $h : C \to M$ which is isotopic to its mirror-image. Otherwise, we say M is **orientable**.

Definition 38. For each $n \ge 1$, the surface nT^2 is said to have **genus** n. S^2 is said to have **genus** 0. $(n\mathbb{R}P^2)$ is said to have **genus** n/2.)

Definition 39. Let X and Y be topological spaces. We say an embedding $f : X \to Y$ is **isotopic** to another embedding $g : X \to Y$, denoted $f \approx g$, iff there exists a continuous map $H : X \times I \to Y$ such that $\forall x \in X$ 1. H(x, 0) = f(x). 2. H(x, 1) = g(x). 3. $\forall t \in I, H(\cdot, t)$ is an embedding of X into Y. We say H is an **isotopy** from f to g.

Definition 40. Given a fixed $t \in I$, the map $H(\cdot, t) : X \to Y$ is defined by: $\forall x \in X, x \mapsto H(x, t)$.

(Read the symbol " \mapsto " as "maps to", or "is sent to".) Instead of $H(\cdot, t) : X \to Y$ we often write $H_t : X \to Y$. They are equivalent.

Definition 41. An embedded circle in \mathbb{R}^3 is called a **knot**. A set of (one or more) disjoint embedded circles in \mathbb{R}^3 is called a **link**.

Definition 42. Let X be a topological space. A path (or a curve) in X is a continuous map $p : I \to X$. A path whose **initial point** p(0) equals its **terminal point** p(1) is called a **loop** (or a closed curve).

Definition 43. Let X and Y be topological spaces, and f and g continuous maps from X to Y. A **homotopy** from f to g is a continuous map $H: X \times I \to Y$ such that 1. $H_0 = f$. 2. $H_1 = g$. We say f is **homotopic** to g, and write $f \sim g$. (Note that the only difference between a homotopy and an isotopy is the "third condition": an isotopy is a homotopy in which every H_t is an embedding.)

Theorems

Theorem 1. A subset A of a metric space M is closed iff it contains all its limit points.

Theorem 2. Given metric spaces M and N, a function $f: M \to N$ is continuous iff the preimage (or inverse image) of every open set is open; i.e., for every open set $U \subset N$, $f^{-1}(U)$ is an open subset of M.

Theorem 3. Every metric space is a topological space. More precisely, given a metric (i.e., a distance function) d on a set X, let \mathcal{T} be the collection of subsets of Xthat are open according to d. Then \mathcal{T} satisfies the definition of being a topology. \mathcal{T} is said to be the topology **induced** by the metric d.

Theorem 4. Let (X, \mathcal{T}) be a topological space, and let $A \subset X$. Then the subspace topology on A is a topology.

Theorem 5. Let $f : X \to Y$ be a continuous map between two topological spaces. Then for every subspace $A \subset X$, the restriction of f to A, i.e., $f|_A : A \to Y$, is continuous.

Theorem 6. If $A \simeq B$, then A is connected iff B is connected.

Theorem 7. \mathbb{R} is connected.

Theorem 8. $A \subset \mathbb{R}$ is connected iff A is an interval (open, closed, or half open).

Theorem 9. The continuous image of a connected set is connected; i.e, if $f : X \to Y$ is a continuous map between topological spaces, and if X is connected, then f(X) is connected.

Theorem 10. If $A \simeq B$, then A is connected iff B is connected.

Theorem 11. A topological space X is connected iff it contains no proper subset which is both open and closed in X.

Theorem 12. If A and B are connected subspaces of a topological space X, and if $A \cap B \neq \phi$, then $A \cup B$ is connected.

Theorem 13. 1. \mathbb{R} is not compact. 2. (Heine-Borel) Every closed interval $[a, b] \subset \mathbb{R}$ is compact.

Theorem 14. The continuous image of a compact set is compact; i.e., if $f: X \to Y$ is a continuous map between two topological spaces, and if X is compact, then f(X) is compact.

Theorem 15. (Classification of 1-manifolds) Every 1manifold is homeomorphic to [0,1] or (0,1) or [0,1) or S^1 .

Theorem 16. For $m \leq n, S^n$ cannot be embedded in \mathbb{R}^m .

Theorem 17. Every closed 2-manifold that can be embedded in \mathbb{R}^3 is homeomorphic to S^2 or to an *n*-hole torus (= the connected sum of *n* tori) for some $n \ge 1$.

Corollary 18. Every closed 2-manifold is homeomorphic to either S^2 or nT^2 or $n\mathbb{R}P^2$, for some $n \ge 1$.

Theorem 19. $\mathbb{R}P^2$ cannot be embedded in \mathbb{R}^3 .

Theorem 20. (1) The boundary of a Möbius band is a circle: $\partial M \simeq S^1$. (2) Gluing a Möbius band and a closed disk along their circle-boundaries yields a projective plane: $M \cup_{\partial} \overline{D^2} \simeq \mathbb{RP}^2$. (3) Gluing two Möbius bands along their circle-boundaries yields a Klein bottle: $M \cup_{\partial} M \simeq K$.

Theorem 21. Every closed 2-manifold that cannot be embedded in \mathbb{R}^3 is homeomorphic to the connected sum of *n* projective planes for some $n \geq 1$.

Theorem 22. $T^2 \# \mathbb{RP}^2 \simeq 3 \mathbb{RP}^2$.

Theorem 23. A torus is not homeomorphic to a Klein bottle.

Theorem 24. $S^2 \not\simeq \mathbb{R}P^2$.

Theorem 25. Every compact surface (with boundary) is homeomorphic to some closed surface minus a finite set of open disks. In other words, every compact surface can be obtained by removing finitely many open disks from one of S^2 , nT^2 , or $n\mathbb{RP}^2$.

Theorem 26. For all $n \ge 1$, S^2 and nT^2 are orientable, while $n\mathbb{RP}^2$ is non-orientable.

Theorem 27. \approx is an equivalence relation.

HW Defs & Thms

Restriction of Continuous Maps Lemma: Let $f: X \to Y$ be a continuous map between two topological spaces. Then for every subspace $A \subset X$, the restriction of f to A, i.e., $f|_A: A \to Y$, is continuous.

Definition 44. A subset A of a metric space X is **bounded** iff for some positive real number r and for some point $x \in X$, $A \subset B_r(x)$.

Definition 45. We say a function $f: X \to Y$, where X and Y are metric spaces, is **bounded** iff its image f(X) is a bounded subset of Y.

Jordan Curve Theorem: Every embedded circle $C \subset \mathbb{R}^2$ separates \mathbb{R}^2 .

Definition 46. Let X be a topological space. A loop whose image is just one point in X is called a **trivial loop**. A loop is said to be **null-homotopic** iff it is homotopic to a trivial loop in X.

Theorem 28. (Brouwer Fixed Point Theorem, Dimension 1) Let $f: I \to I$ be a continuous map. Then f has a fixed point.

Theorem 29. (Borsuk-Ulam Theorem, Dimension 2) Let $f: S^2 \to \mathbb{R}^2$ be continuous. Then there exist antipodal points $p, -p \in S^2$ such that f(p) = f(-p).

Theorem 30. (Brouwer Fixed Point Theorem, Dimension n) Every continuous map $f: \overline{B^n} \to \overline{B^n}$ has a fixed point.