The long line is an example of a connected, Hausdorff topological space that's locally homeomorphic to \mathbb{R} , but is not a manifold, because it is not second countable. Roughly speaking, it is $S_{\Omega} \times [0,1)$, where S_{Ω} is the smallest uncountable ordinal. To describe and understand it in detail, we first need some definitions. I am borrowing most of the following from Munkres's book, *Topology*, Second Edition, Prentice Hall.

Definition A relation R on a set X is an **order relation** if $\forall x, y \in X$, (1) xRy or yRx, (2) $\neg(xRx)$, and (3) R is transitive.

Definition A set X is **well ordered** by an order relation < if every nonempty subset of X has a "smallest" element.

We construct the long line as follows. Let S_{Ω} be the smallest uncountable ordinal (if you don't know what that is, just think of it as an a well-ordered uncountable set). Let $L = S_{\Omega} \times [0,1) - \{(s_0,0)\}$, where s_0 is the smallest element of S_{Ω} . Order L with the dictionary ordering, i.e., (s,t) < (s',t') iff s < s' or [s = s' and t < t'].

We give L the **order topology**, which means a subset of L is open iff it is a union of open intervals (a,b) with $a,b \in L$, a < b. Then L with this topology is called the **long line**.

~~~~~~

Extra Credit Problems

1. Explain why we choose $L = S_{\Omega} \times [0,1)$ minus its smallest element instead of just letting $L = S_{\Omega} \times (0,1]$. Don't read the following hint until you've thought hard. Hint: The second way would not produce a connected space; why?

Definition Let \mathcal{T} be a topology on a set X. A basis for \mathcal{T} is a subset $\beta \subseteq \mathcal{T}$ such that $\forall U \in \mathcal{T}$ and $\forall x \in U, \exists B \in \beta$ with $x \in B \subseteq U$.

- 2. (a) Prove that the long line is not **second countable**, i.e, it does not have a countable basis.
 - (b) Prove that the long line cannot be embedded in \mathbb{R} , or in any \mathbb{R}^n . Hint: \mathbb{R}^n has a countable basis.