- 1. Give a precise definition of what it means for a path or a loop to be *self-intersecting*.
- 2. Let $g: I \to \mathbb{R}^2$ be given by $g(t) = (\cos(2\pi t), \sin(2\pi t))$. Let $h: I \to \mathbb{R}^2$ be given by $h(t) = (\cos(\pi t), \sin(\pi t))$.
 - (a) Draw the image of each of g and h.
 - (b) Only one of the following two questions is valid. Answer it (with proof), and then explain what is wrong with the other question.
 - i. Is q isotopic to h?
 - ii. Is g homotopic to h?
 - (c) Let $j: I \to \mathbb{R}^2$ be given by $j(t) = (3\cos(2\pi t), 3\sin(2\pi t))$. Intuitively, we'd like to think of g and j as isotopic loops; but they're not. So let's make the following definition: Definition Two simple loops $f_0: I \to X$ and $f_1: I \to X$ are **isotopic as simple loops** if there is a continuous map $H: I \to X$ such that $H = f_1$ and for all $t \in I$
 - if there is a continuous map $H: I \times I \to X$ such that $H_0 = f_0$, $H_1 = f_1$, and for all $t \in I$, $H_t: I \to X$ is a simple loop.

Prove that g and j, as defined above, are isotopic as simple loops.

- 3. Let $Y = \overline{B_5(0,0)} B_1(0,0) \subset \mathbb{R}^2$.
 - (a) Let $g : I \to Y$ be given by $g(t) = (4,0), h : I \to Y$ be given by $h(t) = (3,0) + (\cos(2\pi t), \sin(2\pi t))$. Prove that $g \sim h$.
 - (b) Let. $j: I \to Y$ be given by $j(t) = (-3, 0) + (\cos(2\pi t), \sin(2\pi t))$. Prove that h and j are isotopic as simple loops.
- 4. (a) How would you define what it means for two (not-necessarily simple) loops to be *homotopic* as loops?
 - (b) Let $Y = \overline{B_5(0,0)} B_1(0,0) \subset \mathbb{R}^2$. Define $k : I \to Y$ by $k(t) = 3(\cos(2\pi t), \sin(2\pi t))$ and $l: I \to Y$ by $l(t) = 3(\cos(4\pi t), \sin(4\pi t))$. Are k and l homotopic as loops? Formal proof not necessary; but explain your reasoning.
- 5. (a) Prove that \approx is an equivalence relation for maps.

Hint: To prove transitivity, proceed as follows. Let f, g, and h be embeddings of X into Y, such that $f \approx g$ and $g \approx h$. To prove $f \approx h$, we'd like to find a map H from what to what, such that what?

By definition, $f \approx g$ means there is an isotopy $F : X \times I \to Y$ from f to g. Similarly, there is an isotopy $G : X \times I \to Y$ from g to h.

First, define a map
$$J: X \times [0,2] \to Y$$
 as follows: $J(x,t) = \begin{cases} F(x,t) & \text{if } 0 \le t \le 1 \\ G(x,t-1) & \text{if } 1 < t \le 2 \end{cases}$

Then let H(x,t) = J(x,2t), and show that H is the desired isotopy.

Don't forget to also show that \approx is reflexive and symmetric.

(b) It is also true that \sim is an equivalence relation. In your proof above, what would you need to change, and what would you keep the same, in order to prove this?