- 1. (a) Let $X_1 = \mathbb{R}$, $\mathcal{T}_1 = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\mathbb{R}, \phi\}$. Prove that \mathcal{T}_1 is a topology.
 - (b) Let (X_2, \mathcal{T}_2) be \mathbb{R} with the standard topology (i.e., the topology induced by the Euclidean metric). With (X_1, \mathcal{T}_1) given above, let $f : X_1 \to X_2$ be given by f(x) = x. Is f continuous? Is f^{-1} continuous? Prove your answers.
- 2. For i = 1, 2, let (X_i, \mathcal{T}_i) be a topological space.
 - (a) Show that if \mathcal{T}_1 is the discrete topology, then every function $f: X_1 \to X_2$ is continuous.
 - (b) Show that if \mathcal{T}_2 is the indiscrete topology, then every function $f: X_1 \to X_2$ is continuous (regardless of what \mathcal{T}_1 is).
- 3. For i = 1, 2, 3, let (X_i, \mathcal{T}_i) be a topological space. Let $f : X_1 \to X_2$ and $g : X_2 \to X_3$ be continuous maps. Prove that their composition $g \circ f : X_1 \to X_3$ is continuous.

Extra Credit Problems

- 4. Let X and Y be topological spaces. Prove $f : X \to Y$ is continuous iff it takes limit points to limit points; i.e., f is continuous iff for every $p \in X$ that's a limit point of a subset $A \subseteq X$, f(p) is a limit point of f(A).
- 5. Definition Let (X, d) be a metric space. We say a sequence of points $a_1, a_2, a_3, \dots \in X$ converges to a point $p \in X$ if $\forall \epsilon > 0 \exists M$ such that $\forall n > M$, $d(a_n, p) < \epsilon$. We write $\lim_{n \to \infty} a_n = p$, and say the sequence a_1, a_2, a_3, \dots is convergent.

Let (X_1, d_1) and (X_2, d_2) be metric spaces. Prove that $f : X_1 \to X_2$ is continuous iff for every convergent sequence $a_1, a_2, a_3, \dots \in X_1$, $\lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n)$.