Do problems 1.2 and 1.3 from Prasolov's book, and the following problems:

- 1. Prove that \mathbb{R}^2 with the taxicab metric is a metric space.
- 2. Suppose $M_1 = (X, d_1)$ is a metric space. Let $M_2 = (X, d_2)$ be the metric space where $d_2 : X \times X \to [0, \infty)$ is defined by: $d_2(x, y) = 3d_1(x, y)$. Prove M_2 is a metric space.