Review

A topology on a set X is a collection \mathcal{T} of subsets of X satisfying: ϕ and X are in \mathcal{T} ; and \mathcal{T} is closed under unions and finite intersections. X can be any set; elements of X are called **points**. The pair (X, \mathcal{T}) is called a **topological space**. \mathcal{T} is a topology. The elements of \mathcal{T} (they are subsets of X) are called **open** sets. A topology on X is a *declaration* of which subsets of X we are *choosing* to call open; we can choose any collection of subsets we desire, as long as the above conditions are satisfied.

Given a topological space (X, \mathcal{T}) , a subset A of X can be given a topology \mathcal{T}_A by: $V \in \mathcal{T}_A$ iff $V = U \cap A$ for some $U \in \mathcal{T}$. This is called the **subspace topology** (also called the *relative topology*) on A. We say (A, \mathcal{T}_A) is a (topological) **subspace** of (X, \mathcal{T}) . The topology on A is **induced** by the topology on X.

A function from one topological space to another is **continuous** iff the preimage of every open set is open. A **homeomorphism** (denoted \simeq) is a bijection that is continuous and whose inverse is also continuous.

Connectedness

Informal Definition: A **topological invariant** is a property of a topological space that is preserved by homeomorphisms.

Example 1. We will soon prove that: If $A \simeq B$, then A is connected iff B is connected. In other words, "connectedness" is preserved by homeomorphisms, so it is a topological invariant.

Intuitively, we'd like to say [0,3] is connected, while $[0,1] \cup [2,3]$ is not.

Definition 1. A topological space X is **connected** iff it is *not* equal to the union of two disjoint nonempty open subsets.

Example 2. Let $X = (0,1) \cup (2,3) \subset \mathbb{R}$. (Note: X is implicitly assumed to inherit the subspace topology from \mathbb{R} .

Q: Is each of (0,1) and (2,3) open in X?

Q: Is X connected? ²

Example 3. Let $X = [0, 1) \cup (1, 2) \cup [5, 7] \subset \mathbb{R}$.

Q: Is each of [0,1), (1,2), and [5,7] open in X? ³

Q: Is X connected? Can you write X as the union of two disjoint open subsets? 4

Theorem 1. \mathbb{R} is connected.

Proof. (By contradiction.) Suppose \mathbb{R} is not connected. Then, by definition, $\exists A, B \subset \mathbb{R}$ such that $\mathbb{R} = A \cup B$, where A and B are disjoint nonempty open subsets of \mathbb{R} . Pick arbitrary points $a \in A$ and $b \in B$. Let $A' = [a, b] \cap A$. Let z = lub(A') (A' has a least upper bound because it is bounded and nonempty). Now, we claim that $z \notin A$ and $z \notin B$. Proof of claim: Extra Credit. But this gives us a contradiction, since $z \in \mathbb{R} = A \cup B$.

Theorem 2. $A \subseteq \mathbb{R}$ is connected iff A is an interval (open, closed, or half open; infinite or half-infinite).

¹Yes. Why? This isn't as trivial as it seems; you need to think about subspace topology!

²No. Why?

³Yes. Why?

⁴Let $U = [0,1), V = (1,2) \cup [5,7]$; then U and V are disjoint, each is nonempty and open in X, and $X = U \cup V$.

Proof: Extra Credit.

Theorem 3. The continuous image of a connected set is connected; i.e, if $f: X \to Y$ is a continuous map between topological spaces, and if X is connected, then f(X) is connected.

Proof: Homework.

Note. In the above theorem, while f(X) is guaranteed to be connected, Y itself may or may not be connected.

Corollary 4. If X is connected, and Y is homeomorphic to X, then Y is connected (i.e., connectedness is a topological invariant).

Proof: Homework.

Example 4. Prove $[a, b) \not\simeq (c, d)$.

Sketch of Proof: (By contradiction.) Suppose there exists a homeomorphism $h:[a,b)\to(c,d)$. Let $X=[a,b)-\{a\},\ Y=(c,d)-\{h(a)\}$. It is easy to show that Y is not connected, but X is connected (since $X\simeq\mathbb{R}$). It is also easy to show that the restriction $h|_X:X\to Y$ is a homeomorphism, which implies that Y must be connected. This gives us the desired contradiction.

Q: How would you prove that [a, b) is not homeomorphic to a circle (denoted $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$)?

Ans: we will prove this rigorously later; here is an informal proof: You need to remove at least two points from S^1 to make it disconnected, but you can disconnect [a, b) by removing only one point.

Theorem 5. A topological space X is connected iff it contains no proper subset which is both open and closed in X.

Proof: Homework.

Theorem 6. If A and B are connected subspaces of a topological space X, and if $A \cap B \neq \phi$, then $A \cup B$ is connected.

Proof: Homework.