Section 11: Working with higher dimensions. Topology

Suppose we were 2-dimensional creatures, living in R2. If a “2D Christopher Columbus” set out sail
and traveled in a “constant direction”, he would never come back home again. On the other hand,
if the world were a closed surface (such as S? or T?), then traveling in a “constant direction” might
eventually get him back home.

Is the same possible for the 3D universe we live in? Is it possible that traveling in a fast spaceship along
a “constant direction” for a long time might get us back to our starting point? Can you think of any
closed (compact, no boundary) 3-manifolds?

Definition 1. For n > 0, the n-sphere is defined as: S = {# € R"! | d(Z,0) = 1}.
Theorem 1. For n > 1, S™ cannot be embedded in R".

Example 1. According to the above theorem, can S® be embedded in R3? !

A “flatlander” (a 2D person who lives in “flatland”, i.e., a 2D world) cannot really visualize a 2-sphere,
since a 2-sphere can not be embedded in R?. Similarly, we, who live in a world that locally looks like
R3, cannot visualize a 3-sphere, even though we might very well be living in one! But we can learn
to work with it — and with many other mathematical objects that we cannot visualize — by learning
from flatlanders!

Ezxample 2. One of several ways a flatlander can think of a 2-sphere is: two closed disks glued along
their boundaries. Similarly, we can think of a 3-sphere as two closed 3-balls (i.e., 3-dimensional balls in
R3) glued along their boundaries.

Q: Closed has two meanings: one for topological subspaces, one for manifolds. Which one do we mean
when we say closed ball? 2

Q: How should ~ be defined so that S® ~ [B1(0,0,0) U B1(5,0,0)]/ ~ ? 3 We often write this as
B1(0,0,0) Uy B1(5,0,0). It means we’re gluing the two balls along their boundaries.

Example 3. Let’s try to see why the above description of S is consistent with the formal definition given
at the beginning. In other words, we’d like to find a homeomorphism between S3 = {# € R* | d(Z,0) =
1} and B1(0,0,0) Uy B1(5,0,0).

Let’s first do it in one dimension lower. Here’s how a flatlander might describe a homeomorphism
between S? = {# € R? | d(#,0) = 1} and B1(0,0) Uy B1(5,0):

(1) Send the North Pole (0,0,1) € S? C R3 to the point (0,0) € B1(0,0). (2) Send the South Pole

(0,0,—1) € S? C R3 to the point (5,0) € B1(5,0). (3) Send the Equator {(x,y,0) € R? | 22 +y? =1} C

S%? C R3 to 9(B1(0,0)) = d(B1(5,0)). (4) Send circles in the Northern Hemisphere parallel to the

Equator to circles in B;(0,0) centered at (0,0). (5) Send circles in the Southern Hemisphere parallel

to the Equator to circles in Bj(5,0) centered at (5,0).

Q: What is the intersection of S? with the horizontal plane of height 1/2 in R3? How about heights 0,
1, —1, 27 4 These are called horizontal cross sections of S2.

Q: How would you rigorously define a horizontal hyperplane in R?* (i.e., a “horizontal R3” in R%)?
5

Q: What is the intersection of S® C R* with each of the following hyperplanes: (a) {(z,y,z,w) €
R* | w = 0}. (b) {(x,y,2z,w) € R* | w=1}. (c) {(z,y,2,w) ER* | w=1/2}. O

No. Although the theorem doesn’t say this directly, it does imply it. Proof: Homwork.

2We mean “topological”; i.e., a closed subset of R®.

H(z,y,2) ~ (z+5,y,2)}.

4A horizonal circle of radius v/3/2. A horizontal great circle (i.e, of radius 1); a point; a point; ¢.
{(x,y,2z,w) € R* | w is a constant}.

SA great 2-sphere. A point. A (not great) 2-sphere.



Q: Now try using horizontal cross sections of S® to show S? is homeomorphic to B1(0,0,0)Us B1(5,0,0).

Definition 2. Let X be a topological space. An embedded circle in X is called a simple closed curve
(scc). (Simple means not self-intersecting; closed means it’s a loop — no endpoints.)

Definition 3. Let X be a topological space, with A C B C X. We say A bounds B iff A = 0B.

Ezample 4. The unit circle S C R? bounds the unit disk Bj(0,0) C R2.

Ezample 5. For 3D beings like us, it is easy to see that every scc C' in the 2-sphere bounds a (not
necessarily round) disk on each side; i.e., there exist two embedded closed disks D1, Dy C S? with
disjoint interiors such that C' = 0D; = dDs. (Although “easy to see”, this is rather difficult to prove
rigorously. It’s called the Jordan Curve Theorem.) However, for a flatlander, who thinks of S? as

B1(0,0) Uy B1(5,0), this is not as easy to see. Let C' C B1(0,0) be the circle of radius 1/4 around the
point (1/2,0). Draw a picture and shade in each of the two disks that C' bounds in B;(0,0) Ug B;(5,0).

Example 6. Now repeat the above example in one dimension higher: try to see why an embedded S?
in S2 bounds a closed 3-ball on each side.
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Ezample 7. To work with S2 x S1, it is often helpful to think of it as S? x I with S? x {0} glued to
S2 x {1}.

Q: Is S? x S a manifold? If so, is it a closed manifold? If not, why not? *

Q: Find a 2-sphere in S? x S' that does not bound a ball on either side. &

Q: Find a 2-sphere in S? x S! that bounds a ball on one side only. ?

Q: Is there a 2-sphere in S? x S! that bounds a ball on both sides? 19

Theorem 2. The only connected 3-manifold in which an embedded 2-sphere bounds a ball on both sides
is the 3-sphere.

Proof: (Idea) If an embedded 2-sphere bounds a ball on both sides, then the two balls share the same
boundary. But we already saw above that two balls glued along their boundaries yields an S3.
Theorem 3. S % S? x S'. Proof: Homework.

Ezxample 8. Recall the definition of the connected sum of two n-manifolds, M and N: remove an open n-
ball from each manifold; then M — By and N — By will each have a boundary component homeomorphic
to S”~1. Glue these boundaries together to obtain the connected sum of M and N.

Q: What is the connected sum of an arbitrary surface with a 2-sphere? Why? What is the connected

sum of an arbitrary 3-mfd with a 3-sphere? Why? !

"It’s a closed manifold.

852 x {z}, where z is any point in S*.

9Take the boundary of any closed ball in S? x S*.

10No, by the next theorem.

"Eor both, the connected sum is homeomorphic to the original manifold.



