Suppose we were 2-dimensional creatures, living in \mathbb{R}^2 . If a "2D Christopher Columbus" set out sail and traveled in a "constant direction", he would never come back home again. On the other hand, if the world were a closed surface (such as S^2 or T^2), then traveling in a "constant direction" might eventually get him back home.

Is the same possible for the 3D universe we live in? Is it possible that traveling in a fast spaceship along a "constant direction" for a long time might get us back to our starting point? Can you think of any closed (compact, no boundary) 3-manifolds?

Definition 1. For $n \ge 0$, the *n*-sphere is defined as: $S^n = \{\vec{x} \in \mathbb{R}^{n+1} \mid d(\vec{x}, \vec{0}) = 1\}.$

Theorem 1. For $n \geq 1$, S^n cannot be embedded in \mathbb{R}^n .

Example 1. According to the above theorem, can S^5 be embedded in \mathbb{R}^3 ?¹

A "flatlander" (a 2D person who lives in "flatland", i.e., a 2D world) cannot really visualize a 2-sphere, since a 2-sphere can not be embedded in \mathbb{R}^2 . Similarly, we, who live in a world that *locally* looks like \mathbb{R}^3 , cannot visualize a 3-sphere, even though we might very well be living in one! But we can learn to work with it — and with many other mathematical objects that we cannot visualize — by learning from flatlanders!

Example 2. One of several ways a flatlander can think of a 2-sphere is: two closed disks glued along their boundaries. Similarly, we can think of a 3-sphere as two closed 3-balls (i.e., 3-dimensional balls in \mathbb{R}^3) glued along their boundaries.

Q: Closed has two meanings: one for topological subspaces, one for manifolds. Which one do we mean when we say closed ball? 2

Q: How should ~ be defined so that $S^3 \simeq [\overline{B_1(0,0,0)} \cup \overline{B_1(5,0,0)}] / \sim ?^{-3}$ We often write this as $\overline{B_1(0,0,0)} \cup_{\partial} \overline{B_1(5,0,0)}$. It means we're gluing the two balls along their boundaries.

Example 3. Let's try to see why the above description of S^3 is consistent with the formal definition given at the beginning. In other words, we'd like to find a homeomorphism between $S^3 = \{\vec{x} \in \mathbb{R}^4 \mid d(\vec{x}, \vec{0}) = 1\}$ and $\overline{B_1(0, 0, 0)} \cup_{\partial} \overline{B_1(5, 0, 0)}$.

Let's first do it in one dimension lower. Here's how a flatlander might describe a homeomorphism between $S^2 = \{\vec{x} \in \mathbb{R}^3 \mid d(\vec{x}, \vec{0}) = 1\}$ and $\overline{B_1(0,0)} \cup_{\partial} \overline{B_1(5,0)}$:

(1) Send the North Pole $(0,0,1) \in S^2 \subset \mathbb{R}^3$ to the point $(0,0) \in \overline{B_1(0,0)}$. (2) Send the South Pole $(0,0,-1) \in S^2 \subset \mathbb{R}^3$ to the point $(5,0) \in \overline{B_1(5,0)}$. (3) Send the Equator $\{(x,y,0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\} \subset S^2 \subset \mathbb{R}^3$ to $\partial(\overline{B_1(0,0)}) = \partial(\overline{B_1(5,0)})$. (4) Send circles in the Northern Hemisphere parallel to the Equator to circles in $\overline{B_1(0,0)}$ centered at (0,0). (5) Send circles in the Southern Hemisphere parallel to the Equator to circles in $\overline{B_1(5,0)}$ centered at (5,0).

Q: What is the intersection of S^2 with the horizontal plane of height 1/2 in \mathbb{R}^3 ? How about heights 0, 1, -1, 2? ⁴ These are called horizontal **cross sections** of S^2 .

Q: How would you rigorously define a **horizontal hyperplane** in \mathbb{R}^4 (i.e., a "horizontal \mathbb{R}^3 " in \mathbb{R}^4)?

Q: What is the intersection of $S^3 \subset \mathbb{R}^4$ with each of the following hyperplanes: (a) $\{(x, y, z, w) \in \mathbb{R}^4 \mid w = 0\}$. (b) $\{(x, y, z, w) \in \mathbb{R}^4 \mid w = 1\}$. (c) $\{(x, y, z, w) \in \mathbb{R}^4 \mid w = 1/2\}$.⁶

¹No. Although the theorem doesn't say this directly, it does imply it. Proof: Homwork.

²We mean "topological"; i.e., a closed subset of \mathbb{R}^3 .

 $^{{}^{3}\{(}x, y, z) \sim (x + 5, y, z)\}.$

⁴A horizonal circle of radius $\sqrt{3}/2$. A horizontal great circle (i.e, of radius 1); a point; a point; ϕ .

⁵{ $(x, y, z, w) \in \mathbb{R}^4 \mid w \text{ is a constant}$ }.

⁶A great 2-sphere. A point. A (not great) 2-sphere.

Q: Now try using horizontal cross sections of S^3 to show S^3 is homeomorphic to $\overline{B_1(0,0,0)} \cup_{\partial} \overline{B_1(5,0,0)}$.

Definition 2. Let X be a topological space. An embedded circle in X is called a **simple closed curve** (scc). (Simple means not self-intersecting; closed means it's a loop – no endpoints.)

Definition 3. Let X be a topological space, with $A \subset B \subset X$. We say A bounds B iff $A = \partial B$. Example 4. The unit circle $S^1 \subset \mathbb{R}^2$ bounds the unit disk $\overline{B_1(0,0)} \subset \mathbb{R}^2$.

Example 5. For 3D beings like us, it is easy to see that every scc C in the 2-sphere bounds a (not necessarily round) disk on each side; i.e., there exist two embedded closed disks $D_1, D_2 \subset S^2$ with disjoint interiors such that $C = \partial D_1 = \partial D_2$. (Although "easy to see", this is rather difficult to prove rigorously. It's called the Jordan Curve Theorem.) However, for a flatlander, who thinks of S^2 as $\overline{B_1(0,0)} \cup_{\partial} \overline{B_1(5,0)}$, this is not as easy to see. Let $C \subset \overline{B_1(0,0)}$ be the circle of radius 1/4 around the point (1/2, 0). Draw a picture and shade in each of the two disks that C bounds in $\overline{B_1(0,0)} \cup_{\partial} \overline{B_1(5,0)}$.

Example 6. Now repeat the above example in one dimension higher: try to see why an embedded S^2 in S^3 bounds a closed 3-ball on *each* side.

 $\sim\sim\sim\sim\sim\sim\sim\sim\sim$

Example 7. To work with $S^2 \times S^1$, it is often helpful to think of it as $S^2 \times I$ with $S^2 \times \{0\}$ glued to $S^2 \times \{1\}$.

Q: Is $S^2 \times S^1$ a manifold? If so, is it a closed manifold? If not, why not? ⁷

Q: Find a 2-sphere in $S^2 \times S^1$ that does not bound a ball on either side. ⁸

Q: Find a 2-sphere in $S^2 \times S^1$ that bounds a ball on one side only. ⁹

Q: Is there a 2-sphere in $S^2 \times S^1$ that bounds a ball on both sides? ¹⁰

Theorem 2. The only connected 3-manifold in which an embedded 2-sphere bounds a ball on both sides is the 3-sphere.

Proof: (Idea) If an embedded 2-sphere bounds a ball on both sides, then the two balls share the same boundary. But we already saw above that two balls glued along their boundaries yields an S^3 .

Theorem 3. $S^3 \not\simeq S^2 \times S^1$. Proof: Homework.

Example 8. Recall the definition of the connected sum of two *n*-manifolds, M and N: remove an open *n*-ball from each manifold; then $M - B_1$ and $N - B_2$ will each have a boundary component homeomorphic to S^{n-1} . Glue these boundaries together to obtain the connected sum of M and N.

Q: What is the connected sum of an arbitrary surface with a 2-sphere? Why? What is the connected sum of an arbitrary 3-mfd with a 3-sphere? Why? 11

⁷It's a closed manifold.

 $^{{}^{8}}S^{2} \times \{x\}$, where x is any point in S^{1} .

⁹Take the boundary of any closed ball in $S^2 \times S^1$.

¹⁰No, by the next theorem.

¹¹For both, the connected sum is homeomorphic to the original manifold.