
Section 10: Surfaces with boundary. Orientability. Topology

In the previous section we saw the classification of all closed surfaces. The following theorem gives a
classification of compact surfaces that are not closed (i.e., have boundary).
Theorem 1. Every compact surface with boundary is homeomorphic to some closed surface minus a
finite set of disjoint open disks. In other words, every compact surface can be obtained from one of S2,
nT 2, or nRP2 by removing finitely many disjoint open disks.

Sketch of Proof: Let F be a compact surface. Then its boundary consists of a number m ≥ 0 of circles
(why?). Take m disjoint copies D1, · · · , Dm of the closed unit disk and glue each of them along its
boundary to one of the m circle boundaries of F . The new surface F ′ we obtain is a closed surface; so,
by the classification of closed surfaces, it is homeomorphic to S2, nT 2, or nRP2. So F equals S2, nT 2,
or nRP2 minus a finite number of disjoint open disks.
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Orientable vs. non-orientable surfaces

Draw a clockwise oriented circle i> on a piece of paper. Can you isotop it on the paper (i.e., in R2)
to make it look like a counterclockwise oriented circle i< ? 1

Now draw a i> on a Möbius band, and “push” it a full turn along the Möbius band (by repeatedly
drawing copies of it). You must remember that the Möbius band is a 2-manifold, so ideally the paper
has no thickness. So, as you’re pushing the picture along, you should pretend the paper is see-through
and stop as soon as the picture comes back to its starting position, even if it may seem to be on the
“other side” of the paper. Now stop reading and actually do this!

What did you get? The two copies look different! So, on the Möbius band, i> is isotopic to i< .
Now do the same on a cylinder (S1 × [0, 1]). Is i> isotopic to i< on a cylinder?

In mathematics, we express these ideas by saying that the Möbius band is not orientable, while the
plane and the cylinder are orientable.

Now, on a 2-sphere, there is a way to isotop a i> to a i< ! Can you see how? But, intuitively, we’d
like to say that S2 is orientable. So, instead of considering an oriented circle, we’ll consider a closed
disk whose circle boundary is oriented, i.e., a “filled-in” i> or i< . On S2, a filled-in i> is not
isotopic to a filled-in i< . Thus S2 is orientable.

Informal definition: A 2-manifold M is orientable if a filled-in i> is not isotopic to a filled-in i<
on M .

Is T 2 orientable ? How about an n-hole torus? How about the Klein bottle? 2

The commonly used (formal) definition of orientability is too technical and would take up too much
space here. Instead, below we have a non-standard but equivalent definition. It may not completely
make sense until you see a precise definition of isotopy, later. So just read it, but for now you can work
with the informal definition given above.
Definition 1. Let M be a 2-manifold, and let D2 denote the closed unit disk in R2. Given an embedding
h : D2 → M , the mirror-image h′ : D2 → M of h is defined by h′(x, y) = h(−x, y). We say M is
non-orientable if there is an embedding h : D2 → M that is isotopic to its mirror-image. Otherwise,
we say M is orientable.
Note. In the above definition, h and h′ have the same image, i.e., h(D2) = h′(D2). But they are different
maps; for example, h(1, 0) 6= h′(1, 0). When we talk about h and h′ being isotopic, we are concerned
not just with their images, but with the maps themselves. Again, this will make more sense when we
see the formal definition of isotopy, later.

1No, it’s impossible.
2Yes. Yes. No.
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Theorem 2. For all n ≥ 1, S2 and nT 2 are orientable, and nRP2 is non-orientable. Proof: Omitted.

Corollary 3. A closed surface is embeddable in R3 iff it is orientable. Proof: Homework.

Definition 2. For each n ≥ 1, the surface nT 2 is said to have genus n, S2 is said to have genus 0, and
nRP2 is said to have genus n/2.
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