Homework #11 Topology

1. Let $Y = S^1 \subset \mathbb{R}^2$. For each of the following spaces X, determine whether the map $f: X \to Y$ defined by $f(x) = (\cos(2\pi x), \sin(2\pi x))$ is a homeomorphism. Support your answers. (Be careful with checking continuity for f and f^{-1} .)

- (a) $X = [0,1] \subset \mathbb{R}$.
- (b) $X = [0, 1) \subset \mathbb{R}$.
- 2. In \mathbb{R}^2 with the standard topology (induced by the Euclidean metric), let's call a subset of the form $(a,b)\times(c,d)$ an **open rectangle**.
 - (a) Prove that every open rectangle is a union of open balls.
 - (b) Prove that every open ball is a union of open rectangles.
- 3. Let \mathcal{T}_1 be the topology on \mathbb{R}^2 induced by the Euclidean metric, and let \mathcal{T}_2 be the product topology on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. Prove that $(\mathbb{R}^2, \mathcal{T}_1) \simeq (\mathbb{R}^2, \mathcal{T}_2)$. Hint: Use the previous problem to show $\mathcal{T}_1 = \mathcal{T}_2$.
- 4. Let X_1 and X_2 be topological spaces. For each i=1,2, we define the **projection map** $\pi_i: X_1 \times X_2 \to X_i$ by $\pi_i(x_1, x_2) = x_i$. Prove that every projection map is continuous.
 - (For example, if $X_1 = X_2 = \mathbb{R}$, then π_1 is the projection map onto the x-axis, while π_2 is the projection map onto the y-axis.)

Extra Credit Problems

- 5. Let Y, X_1 , and X_2 be topological spaces. For each i = 1, 2, let $f_i : Y \to X_i$ be a given map. Let $f: Y \to X_1 \times X_2$ be defined by $f(y) = (f_1(y), f_2(y))$.
 - Prove f is continuous iff each of its component functions is continuous; i.e., f is continuous iff for each i, f_i is continuous.
- 6. Let X and Y be topological spaces. Prove that for every point $x \in X$, the subspace $\{x\} \times Y \subset X \times Y$ is homeomorphic to Y.
- 7. (a) Let X and Y be sets, with $A, C \subseteq X$ and $B, D \subseteq Y$. Prove $(A \times B) \cap (C \times D)$ is of the form $E \times F$ for some $E \subseteq X$ and $F \subseteq Y$.
 - (b) Use the above to prove that the product topology indeed satisfies the condition of being closed under finite intersections.