- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be given by: $f(x) = \begin{cases} 1/2 & \text{if } x < 0 \\ 1/3 & \text{if } x \ge 0 \end{cases}$. Prove that f is not continuous at 0.
- 2. In the following, just find a map that each problem asks for, without proving continuity, injectivity, or surjectivity. Each of the following sets is assumed to come with the standard Euclidean metric.
 - (a) Let $M_1 \subset \mathbb{R}^2$ be the closed unit disk (i.e., $M_1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$). Let $M_2 \subset \mathbb{R}^2$ be the closed disk of radius 2 centered at the origin. Find a continuous bijection (one-to-one and onto map) $f: M_1 \to M_2$.
 - (b) Let $M_3 \subset \mathbb{R}^2$ be the closed disk of radius 1 centered at the point (3,4). Find a continuous bijection $f: M_1 \to M_3$.
 - (c) Let $M_4 \subset \mathbb{R}^2$ be the closed disk of radius 2 centered at the point (3,4). Find a continuous bijection $f: M_1 \to M_4$.
- 3. Suppose (X_1, d_1) and (X_2, d_2) are metric spaces. Let $b \in X_2$, and let $f : X_1 \to X_2$ be the constant map f(x) = b, $\forall x \in X_1$. Show that f is continuous on X_1 .
- 4. Suppose (X_1, d_1) and (X_2, d_2) are metric spaces, and suppose $f : X_1 \to X_2$ is a continuous function. Prove that $\forall a \in X_1$ and $\forall \epsilon > 0$, $\exists \delta > 0$ such that the ball of radius δ around a is mapped under f to inside the ball of radius ϵ around f(a); i.e., $f(B_{\delta}(a)) \subseteq B_{\epsilon}(f(a))$.
- 5. Suppose (X_1, d_1) and (X_2, d_2) are metric spaces, and suppose $f : X_1 \to X_2$ is a continuous function. Prove that the preimage of any open set in X_2 is an open set in X_1 ; i.e., if $A_2 \subset X_2$ is open, then $A_1 = f^{-1}(A_2) \subset X_1$ is also open.

Extra Credit Problems

6. The Cantor Set.

Start with $[0,1] \subset \mathbb{R}$. Remove its open middle third, i.e., (1/3, 2/3). You're left with $[0,1/3] \cup [2/3,1]$. Now remove the open middle third of each of the above two remaining closed intervals, i.e., remove (1/9, 2/9) and (7/9, 8/9).

What's remaining now? What is the open middle third of each remaining piece?

Keep repeating this process: at the *n*th stage, let C_n denote the set of remaining points. Note that $C_{n+1} \subset C_n$.

The intersection $\bigcap_{n=1}^{\infty} C_n$ is called the **Cantor Set**, which we denote as C.

Is C open, closed, both, or neither, in \mathbb{R} ?

Prove that every point in C is a limit point of C.