So far we know of one way to create new topological spaces from known ones: Subspaces. Now we will learn two other methods: 1. Product Spaces; and 2. Quotient Spaces.

Product Spaces

Recall: Given arbitrary sets X, Y, their product is defined as $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

Example 1. Let X = [0, 1], Y = [0, 1]. Then $X \times Y$ is called the **closed unit square**. Draw a picture of this in \mathbb{R}^2 for yourself.

Example 2. Let $X = \mathbb{R}$, $Y = \mathbb{R}$. Then $X \times Y$ is the plane \mathbb{R}^2 .

Example 3. Is every subset of $X \times Y$ of the form $A \times B$ for some $A \subseteq X$ and some $B \subseteq Y$?¹

Definition 1. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Their **product** is defined by: A set $U \subseteq X \times Y$ is open iff it is a (finite or infinite) union of sets of the form $A \times B$, where A is open in X and B is open in Y.

Example 4. Let X = [0,1], Y = [0,1]. Let $U = (0.5, 0.6) \times (0.1, 0.9)$, $V = (0.4, 0.6) \times (0.8, 0.9)$. Draw a large picture that shows $X \times Y$, and U, and V. Do there exist sets $A \subset X$ and $B \subset Y$ such that $U \cup V = A \times B$?² Are U and V open in $X \times Y$? Is $U \cup V$ open in $X \times Y$?³

Each of U and V is an "open rectangle." Every open set in $X \times Y$ is a union of open rectangles.

Example 5. In the above definition of product topology, let \mathcal{T} denote the collection of sets defined to be open in $X \times Y$. Let's check that \mathcal{T} is indeed a topology on $X \times Y$:

1. Why is $\phi \in \mathcal{T}$? Why is $X \times Y \in \mathcal{T}$?

2. Why is \mathcal{T} closed under arbitrary unions?

3. \mathcal{T} is also closed under finite intersections, but this is harder to see (Extra Credit).

Example 6. What is $S^1 \times [0, 1]$? You can visualize it as a soda can without the top and bottom: a **cylinder**. You can also visualize it as the subset of \mathbb{R}^2 between two concentric circles, like a washer; the mathematical term for it is an **annulus**. Thus, annulus and cylinder are the same thing, i.e., homeomorphic — they're just different ways of visualizing the same topological object.

Note. How is the unit circle S^1 a topological space? It is a subspace of \mathbb{R}^2 .

What is $S^1 \times [0,2]$? It too is a cylinder. Is this cylinder homeomorphic to the one above?⁴

Example 7. What is $S^1 \times S^1$? A torus.

Example 8. Let $X = [0,1] \times [0,1]$. We can put a topology on X in two different ways:

First way: 1. Start with \mathbb{R} , with the Euclidean metric. 2. The metric induces a topology on \mathbb{R} . 3. Then [0,1] inherits the subspace topology from \mathbb{R} . 4. Then $[0,1] \times [0,1]$ is given the product topology.

Second way: $X = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1\} \subset \mathbb{R}^2$; so let X inherit the subspace topology from \mathbb{R}^2 .

Q: Do these two methods produce the same topology on X? Ans: Yes. Proof: Homework.

We sometimes abbreviate $[0,1] \times [0,1]$ by $[0,1]^2$.

¹No. Consturct a counterexample!

²No. (Look at your picture.)

³Yes to both, by the definition of product topology.

 $^{^{4}}$ Yes.

If we glue (connect) the two endpoints of a string together, we get a loop. If we "glue" or "identify" the two endpoints of [0,1] into one point, intuitively, we get a circle. If we take two closed disks and glue or identify their two circle boundaries together, we get a sphere S^2 . If we glue two opposite edges of $[0,1] \times [0,1]$, we get a cylinder. If we pairwise glue all opposite edges of $[0,1] \times [0,1]$, we get a torus. How can we make these ideas precise? We define quotient spaces (or identification spaces).

Recall: Let X be an arbitrary set. An equivalence relation on X is a relation (i.e., a set of ordered pairs) on X that is: reflexive $(x \sim x)$, symmetric (if $x \sim y$, then $y \sim x$), and transitive (if $x \sim y$ and $y \sim z$, then $x \sim z$).

For each $x \in X$, the equivalence class of x is defined as: $[x] = \{y \in X \mid y \sim x\}$.

Informally speaking, if we take [0, 1] and "glue" 0 to 1, we get a circle. We represent the "gluing" by writing $0 \sim 1$.

 $\sim\sim\sim\sim\sim\sim\sim\sim\sim$

Definition 2. Let X be a set, ~ an equivalence relation on X, and Q the set of all equivalence classes of ~, i.e, $Q = \{[x] \mid x \in X\}$. Define a map $q: X \to Q$ by: for each $x \in X$, q(x) = [x]. The map q is called the **quotient map** (or the *identification map*) from X to Q. We sometimes write X/\sim instead of Q.

Definition 3. Let (X, \mathcal{T}_X) be a topological space, ~ an equivalence relation on X, and $q: X \to Q$ the corresponding quotient map. The **quotient topology** on Q is defined as $\mathcal{T}_Q = \{U \subseteq Q \mid q^{-1}(U) \in \mathcal{T}_X\}$. In other words, U is declared to be open in Q iff its preimage $q^{-1}(U)$ is open in X. The pair (Q, \mathcal{T}_Q) is called the **quotient space** (or the *identification space*) obtained from (X, \mathcal{T}_X) and the equivalence relation ~.

Example 9. Let X = [0, 1]. Let ~ be the equivalence relation such that $0 \sim 1$, with no other distinct points related to each other. We want to understand what the points and the open sets in Q look like. There is some notation to get used to.

- Q: Write the equivalence relation \sim as a set of ordered pairs. ⁵
- Q: Write [0] as a set. ⁶
- Q: Write [1] as a set. ⁷

Q: Write [1/2] as a set. Ans: $[1/2] = \{1/2\}$.

Q: $q^{-1}([0]) =$? Ans: $\{0, 1\}$. $q^{-1}([1/2]) =$? Ans: $\{1/2\}$.

Q: Let A = [0, 1/2). Is A open in X? Yes; why? Let A' = q(A). Is A' open in Q? Ans: By definition, A' is open in Q iff its preimage $q^{-1}(A')$ is open in X. What is $q^{-1}(A')$? Be careful: it's not A! $q^{-1}(A') = A \cup \{1\}$; why? So $q^{-1}(A')$ is not open in X; therefore A' is not open in Q.

Q: Let B = (0, 1/2). Is A open in X? Yes; why? Let B' = q(B). Is B' open in Q? Ans: Yes, b/c $q^{-1}(B') = B$, which is open in X.

Q: Find an open subset of Q that contains the point [0]. Ans: One trivial answer is Q itself; why?

Q: Find a proper open subset of Q that contains the point [0]. (Think before reading the answer.) ⁸

Example 10. Find a homeomorphism from $[0,1]/\{0 \sim 1\}$ to S^1 (just find a map, without proving it is a homeomorphism).

Ans: In polar coordinates: $f(x) = (1, 2\pi x)$. In rectangular coordinates: $f(x) = (\cos(2\pi x), \sin(2\pi x))$.

⁵{ $(x, y) \in [0, 1]^2$ | x = y or (x = 0 and y = 1) or (x = 1 and y = 0)}.

⁶By definition, $[0] = \{x \in X \mid x \sim 0\} = \{0, 1\}.$

 $^{^{7}[1] = [0] = \{0, 1\}.}$

⁸Let $C = [0, 1/3) \cup (2/3, 1]$. Then q(C) contains [0]; why? And q(C) is open in Q; why?

Example 11. Let X be the unit closed square, $[0,1]^2$. Identify the left edge of X with its right edge: $Y = X/\{(0,b) \sim (1,b)\} \mid b \in [0,1]\}.$

Q: Is X a subset of \mathbb{R}^2 ? Yes. Is Y a subset of \mathbb{R}^2 ? No. Is Y a subset of \mathbb{R}^3 ? No.

Y is an abstract set, with the quotient topology. But Y can be shown to be homeomorphic to the cylinder $S^1 \times [0,1] \subset \mathbb{R}^2 \times \mathbb{R} = \mathbb{R}^3$. So we say Y is a cylinder, even though it's not really a subset of \mathbb{R}^3 . *Example* 12. What equivalence relation on $X = [0,1]^2$ gives a torus as the quotient space? ⁹

 $^{{}^{9}[0,1]^{2} / \{(}a,0) \sim (a,1), (0,b) \sim (1,b), \}.$