Definition 1. A metric space consists of a set X and a distance function $d: X \times X \to [0, \infty)$ such that $\forall x, y, z \in X$ 1. d(x, y) = 0 iff x = y; 2. d(x, y) = d(y, x) (d is symmetric); 3. $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality).

Example 1. \mathbb{R} with the **Euclidean metric** (the "standard" metric): $X = \mathbb{R}$, d(x, y) = |x - y|. Why is this a metric space? If instead we had d(x, y) = x - y, would we still have a metric space?

Example 2. \mathbb{R} with the **discrete metric**, denoted \mathbb{R}_d :

 $X = \mathbb{R}, d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}.$ Why is this a metric space?

What if we let d(x, y) = 0 for all x, y, is it still a metric space?

Example 3. \mathbb{R}^n with the **Euclidean metric** :

 $X = \mathbb{R} \times \cdots \times \mathbb{R}$ (*n* times); for $x = (x_1, \cdots, x_n)$, $y = (y_1, \cdots, y_n)$, $d(x, y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}$. Why is this a metric space? Conditions 1 and 2 of the definition (above) are clearly satisfied. Condition 3 is the well-known triangle inequality (skip proof).

Example 4. \mathbb{R}^2 with the **taxicab metric**: $X = \mathbb{R}^2$, for $a = (a_1, a_2)$, $b = (b_1, b_2)$, $d(a, b) = |a_1 - b_1| + |a_2 - b_2|$. Why is this a metric space? (HW)

Note.

- 1. Unless stated otherwise, whenever we refer to \mathbb{R} as a metric space without stating what the distance function d is, we mean " \mathbb{R} with the Euclidean metric."
- 2. For a metric space (X, d), X is called **the underlying set**. Sometimes we abuse notation and just write X instead of (X, d).

Definition 2. Given a metric space (X, d), a point $x \in X$, and a real number r > 0, the **ball** of radius r around x is defined as

$$B_r(x) = \{ y \in X \mid d(x, y) < r \}$$

Example 5. In \mathbb{R} with the Euclidean metric, $B_2(1) = ?^{-1}$

Example 6. In \mathbb{R}^2 with the Euclidean metric, what does $B_2(1,2)$ look like? (Strictly speaking, we should write $B_2((1,2))$; but too many parentheses can make in difficult to read, so we slightly abuse notation and write only one set of parentheses.) How about $B_2(1,2) \subset \mathbb{R}^3$, what does it look like?

Example 7. In \mathbb{R}_d , what is $B_3(8)$? What is $B_{0.5}(8)$?

Example 8. In \mathbb{R}^2 with the taxicab metric, what does $B_1(0,0)$ look like?

Example 9. Is there a metric on \mathbb{R}^2 for which $B_1(0,0) = (-1,1) \times (-1,1)$?³

Definition 3. A subset A of a metric space X is said to be **open** in X iff $\forall x \in A, \exists r > 0$ such that $B_r(x) \subset A$.

¹The open interval from -1 to 3: (-1, 3).

 $^{{}^{2}}B_{3}(8) = \mathbb{R} ; B_{0.5}(8) = \{8\}.$

 $^{^{3}}d(a,b) = \max\{|a_{1} - b_{1}|, |a_{2} - b_{2}|\}.$

Example 10. The interval (-1, 1] is not open in \mathbb{R} . Why?⁴

Example 11. The interval (-1, 1) is an open subset of \mathbb{R} . Why?

Proof: Given an arbitrary $x \in (-1, 1)$, let $r = \min\{d(x, 1), d(x, -1)\}$. Then, we prove as follows that $B_r(x) \subset (-1, 1)$. Let $y \in B_r(x)$; we'll show $y \in (-1, 1)$. We will do so by showing that d(0, y) < 1. By definition of $B_r(x)$, d(x, y) < r; so $d(x, y) < \min\{d(x, 1), d(x, -1)\}$; so d(x, y) < d(x, 1) and d(x, y) < d(x, -1). By the triangle inequality, $d(0, y) \leq d(0, x) + d(x, y)$. So, d(0, y) < d(0, x) + d(x, 1) and d(0, y) < d(0, x) + d(x, -1). If $x \ge 0$, then the right hand side of the first inequality equals 1. If x < 0, then the left hand side of the second inequality equals 1. So either way, d(0, y) < 1, as desired. We showed that for every $x \in (-1, 1)$, there is a positive r such that $B_r(x) \subset (-1, 1)$. So by the definition of open, (-1, 1) is an open subset of \mathbb{R} .

Example 12. Is the interval $(2, \infty)$ open in \mathbb{R} ? Yes. Why?

Definition 4. Let A be a subset of a metric space X. The **complement** of A is $A^c = X - A$. A is said to be **closed** in X iff its complement A^c is open in X.

Example 13. $(-\infty, -1] \cup [1, \infty)$ is closed in \mathbb{R} . Why?

Example 14. Is $(-\infty, -1]$ closed in \mathbb{R} ?⁵

Example 15. Is [-1,1] closed in \mathbb{R} ?⁶

Example 16. [-1,1) is neither open nor closed in \mathbb{R} . Why?

Example 17. \mathbb{R} is open in \mathbb{R} . Why? ϕ is open in \mathbb{R} . Why?

Example 18. \mathbb{R} is closed in \mathbb{R} . ϕ is closed in \mathbb{R} . Why?

Example 19. Is the x-axis open or closed or neither in \mathbb{R}^2 ?⁷

Example 20. Find an open set in \mathbb{R}_d . Find a closed set in \mathbb{R}_d .⁸

(Quote from Munkres's book, *Topology*: Q: "What's the difference between a door and a set?" A: "A door is always either open or closed.")

For emphasis, $B_r(x)$ is sometimes called the *open* ball of radius r around x. In contrast, we have: Definition 5. The **closed ball** of radius r around x is defined as

$$\overline{B_r(x)} = \{ y \in X \mid d(x, y) \le r \}$$

Example 21. Draw the open and closed balls of radius 5 around the point 2 in \mathbb{R} . Draw the open and closed balls of radius 5 around the point (2,5) in \mathbb{R}^2 .

Definition 6. Let A be a subset of a metric space X. A point $x \in X$ is said to be a **limit point** of A iff every ball around x contains a point of A other than x.

(Other names used for *limit point*: cluster point; accumulation point.)

Example 22. Let $X = \mathbb{R}$, A = [0, 2). Which of the points x = 0, 1, 2, 3 are limit points of A? Why? ⁹ What if $A = [0, 1] \cup \{2\}$? ¹⁰

(Equivalent definition of limit point: x is a limit point of A iff $\forall \epsilon > 0, \exists y \in A - \{x\}$ such that $d(x, y) < \epsilon$.)

⁴Because there is no positive r for which $B_r(1) \subset (-1, 1]$.

⁵Yes. Why?

 $^{^{6}}$ Yes. Why?

⁷Closed. Why?

⁸Each of \mathbb{R}_d and ϕ is both open and closed.

 $^{^{9}0, 1 \}text{ and } 2.$

 $^{^{10}0}$ and 1.

Theorem 1. A subset A of a metric space X is closed iff it contains all its limit points.

Proof. " \Rightarrow " : Suppose A is closed. Then, by definition, A^c is open. Let x be a limit point of A. We want to show $x \in A$. By definition of limit point, every open ball around x intersects $A - \{x\}$; therefore no open ball around x is entirely contained in A^c . This implies $x \notin A^c$, since if x were in A^c , then there would be an open ball around x contained entirely in A^c (since A^c is open). Finally, since $x \notin A^c$, x must be in A, as desired.

" \Leftarrow " : (Do yourself!)

Definition 7. Given a subset A of a metric space X, its **interior** A° is defined as the set of all points $x \in A$ such that some open ball around x is a subset of A. $(A^{\circ} \text{ is also written as Int } A \text{ or int}(A).)$

Example 23. (a) What is the interior of $[2,5) \subset \mathbb{R}$?¹¹

(b) What is the interior of $(2,5) \subset \mathbb{R}$?¹²

(c) What is the interior of the closed ball of radius 2 around the origin in \mathbb{R}^2 ? 13

Definition 8. Given a subset A of a metric space X, its closure \overline{A} is defined as A union the set of all limit points of A. The **boundary** of A is defined as $\partial A = \overline{A} - A^{\circ}$.

Example 24. (a) What are the closure and boundary of $[2,5) \subset \mathbb{R}$?¹⁴

(b) What is the closure and boundary of the closed ball of radius 2 around the origin in \mathbb{R}^2 ?¹⁵

Continuity

Definition 9. Let X_1, X_2 be metric spaces, with d_1 and d_2 as their corresponding distance functions. A function $f: X_1 \to X_2$ is said to be **continuous at** $a \in X_1$ iff as $x \to a, f(x) \to f(a)$; this means: $\forall \epsilon > 0, \exists \delta > 0$ such that for every x that satisfies $d_1(a, x) < \delta$ we have $d_2(f(a), f(x)) < \epsilon$. We say f is **continuous** if it is continuous at every point in X_1 .

Example 25. Prove that $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x is continuous.

Proof: Fix an arbitrary point $a \in \mathbb{R}$. We will show f is continuous at a by showing that $\forall \epsilon > 0, \exists \delta > 0$ such that for every x that satisfies $d(a, x) < \delta$ we have $d(f(a), f(x)) < \epsilon$.

Pick any $\epsilon > 0$. Let $\delta = \epsilon/2$. Then, for every x that satisfies $d(a, x) < \delta$ we have: $|a - x| < \delta$, so $|2a - 2x| < 2\delta$, so $d(f(a), f(x)) < \epsilon$, as desired. Since a was an arbitrary point, f is continuous at every point in \mathbb{R} .

Example 26. Determine whether each of the following functions f and g from \mathbb{R} to \mathbb{R} is continuous at 0. (Support your answers informally, without rigorous proof.)

 $f(x) = \left\{ \begin{array}{ll} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{array} \right. \qquad g(x) = \left\{ \begin{array}{ll} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{array} \right.$

 $^{^{11}(2,5).}$

 $^{^{12}(2,5).}$

 $^{^{13}}$ the open ball of radius 2 around the origin.

¹⁴closure = [2, 5]; boundary = $\{2, 5\}$.

 $^{^{15}}$ closure = itself; boundary = circle of radius 2 around the origin.