Closed book. Closed Notes. 20 points per problem. Please write very legibly.

All of the following problems concern Statement Calculus (not Predicate Calculus).

- 1. Is each of the following True or False? Prove your answers.
 - (a) Let Γ be a (possibly infinite) set of formulas. If Γ is not satisfiable, then it contains a formula A that's not satisfiable.

(b) Let A be a formula and Γ and Δ (possibly infinite) sets of formulas. If $\Gamma \vdash A$ and, for every formula $B \in \Gamma$, $\Delta \vdash B$, then $\Delta \vdash A$.

2. (a) State the Strong Completeness and the Strong Soundness Theorems. Then use these theorems to prove the following:

Let B be a formula, and Γ a set of formulas. If $\Gamma \models B$, then for some finite subset Δ of Γ , $\Delta \models B$.

(b) State the Compactness Theorem. Then use the Compactness Theorem (but not the Strong Completeness and the Strong Soundness Theorems) to prove the following:

Let B be a formula, and Γ a set of formulas. If $\Gamma \models B$, then for some finite subset Δ of Γ , $\Delta \models B$.