- 1. Use Theorem 9.2.7 on page 385 (which says every consistent set of formulas is satisfiable) to prove the Compactness Theorem.
- 2. (Extra Credit) Complete the following "direct" proof of the Compactness Theorem.

Compactness Theorem: Let Γ be a set of formulas. If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Proof: If Γ is finite, then there is nothing to prove. So assume $\Gamma = \{A_1, A_2, A_3, \dots\}$ is infinite. (We are implicitly asserting that Γ is countable, which is true since there are only countably many symbols and statement variables and every formula is a finite string of symbols and statement variables.) By hypothesis, for each $i = 1, 2, \dots$, there exists a truth assignment ϕ_i that makes each of A_1, \dots, A_i true. We will construct a truth assignment ϕ that makes A_j true for all j. The construction is recursive:

Base Step. Let P_1, P_2, \cdots denote all the statement variables. Then there are either infinitely many ϕ_i that make P_1 true, or infinitely many ϕ_i that make P_1 false (or possible both) (Why?). In the former case, let $\phi(P_1) = T$; otherwise let $\phi(P_1) = F$.

Let $S_1 = \{\phi_i \mid \phi_i(P_1) = \phi(P_1)\}$. Then S_1 is infinite **(Why?)**.

Recursion Step. Suppose we have defined $\phi(P_1), \dots, \phi(P_k)$. Suppose also that the set $S_k = \{\phi_j \mid \phi_j(P_k) = \phi(P_k)\}$ is infinite. Then we define $\phi(P_{k+1})$ as follows and show that S_{k+1} is infinite.

 $\phi_{k+1} = \begin{cases} \mathsf{T} & \text{if there are infinitely many } \phi_j \text{ such that } \phi_j(P_{k+1}) = \mathsf{T} \\ \mathsf{F} & \text{otherwise} \end{cases}$

Prove that S_{k+1} is infinite.

Prove that ϕ satisfies Γ .

Answer all the (Why?)'s above.