Do **only four** of the following five problems. Closed book. Closed Notes. Only the Definitions-Theorems handout allowed. 25 points per problem. Please write very legibly.

- (a) Let A be a formula whose only connective is ∨. Can A be a tautology? Justify your answer.
 (b) Let A be a formula whose only connective is ↔. Can A be a tautology? Justify your answer.
- 2. Find a model for the sentence $\forall x[R(c,x) \rightarrow R(F(c),F(x))]$, where R is a relation symbol, F a function symbol, and c a constant symbol. Briefly explain your work.
- 3. Show $[\forall x A \to \forall x B] \to [\forall x (A \to B)]$ is not logically valid.
- 4. Let Γ be a set of formulas, and A and B arbitrary formulas in Propositional Logic. Is the following true or false? If $\Gamma \cup \{B\} \models A$ and $\Gamma \cup \{B\} \models \neg A$, then $\Gamma \models \neg B$. Prove your answer.
- 5. Let Γ be a set of formulas, and A and B arbitrary formulas in Propositional Logic. Is the following true or false? If Γ is complete and $\Gamma \vdash (A \rightarrow B)$, then $\Gamma \vdash \neg A$ or $\Gamma \vdash B$. (To say Γ is complete means for every A, Γ proves A or its negation.) Prove your answer.

Axioms and Rules of Inference for Propositional Logic (You may not need the following for any of the problems above.)

Axioms: $(\neg A \lor A)$.

Rules of Inference:

Associative Rule: $\frac{(A \lor (B \lor C))}{((A \lor B) \lor C)}$ Expansion Rule: $\frac{A}{(B \lor A)}$ Contraction Rule: $\frac{(A \lor A)}{A}$ Cut Rule: $\frac{(A \lor B), (\neg A \lor C)}{(B \lor C)}$

Some Derived Rules of Inference:

New Associative Rule: $((A \lor B) \lor C)$
 $(A \lor (B \lor C))$ Commutative Rule: $(A \lor B)$
 $(B \lor A)$ New Expansion Rule:A
 $(A \lor B)$ Modus Ponens:A, $(A \to B)$
B

(You may also use other derived rules of inference, if you recall them accurately.)

Name: _____

Wed 18 Apr 2001

Closed book. Closed Notes. Only the Definitions-Theorems handout allowed. 25 points per problem. Please write very legibly.

Please circle the four problems you are choosing.	1.	2 .	3.	4.	5.	
---	----	------------	----	----	----	--