Name: ____

Fri 16 Feb 2001

Closed book. Closed Notes. 25 points per problem. Please write very legibly.

1. (25 points) Show $\vdash (A \rightarrow (A \lor B)).$

Axioms: $(\neg A \lor A)$.

Rules of Inference:

Associative Rule: $\frac{(A \lor (B \lor C))}{((A \lor B) \lor C)}$ Expansion Rule: $\frac{A}{(B \lor A)}$

Contraction Rule:
$$\frac{(A \lor A)}{A}$$

Cut Rule: $\frac{(A \lor B), (\neg A \lor C)}{(B \lor C)}$

Commutative Rule: $\frac{(A \lor B)}{(B \lor A)}$

Modus Ponens: $\frac{A, (A \rightarrow B)}{B}$

Some Derived Rules of Inference:

New Associative Rule: $\frac{((A \lor B) \lor C)}{(A \lor (B \lor C))}$ New Expansion Rule: $\frac{A}{(A \lor B)}$

You may (but do not need to) also use other derived rules of inference, if you recall them accurately.

- 2. (a) (5 points) Give the definition of **tautological consequence**. Write a complete and grammatically correct sentence.
 - (b) (20 points) True or False: If A and B are formulas such that $\{A\} \models B$, then $\{\neg A\} \models \neg B$. Prove your answer.
- 3. (a) (5 points) Let Γ be a set of formulas, A a formula. Give the definition of $\Gamma \vdash A$. Write a complete and grammatically correct sentence.
 - (b) (20 points) Show if $\Gamma \vdash (A \to B)$, then $\Gamma \cup \{A\} \vdash B$. Hint: Use one or more of the (derived) rules of inference.
- (a) (5 points) Give the definition of what it means for a set of connectives to be adequate. Write a complete and grammatically correct sentence.
 - (b) (15 points) The connective NOR, \downarrow , can be defined as: $(p \downarrow q) \cong (\neg p \land \neg q)$. Write the formula $(p \land q)$ in terms of \downarrow . Explain your work.
 - (c) (5 points) Describe an algorithm (a systematic method) for the following: given an arbitrary *n*-ary truth function $G : \{T, F\}^n \to \{T, F\}$, find a formula A in terms of \downarrow only, such that $H_A = G$.